摘要:
A titanium oxide photocatalyst responsive to visible light which can exhibit a high photocatalytic activity in response to visible light is produced by subjecting titanium oxide and/or titanium hydroxide obtained by neutralizing an acidic titanium compound with a nitrogen-containing base to heat treatment in an atmosphere containing a hydrolyzable metal compound (e.g., a titanium halide) and then to additional heat treatment in a gas having a moisture content of 0.5-4.0 volume % at a temperature of 350° C. or above. The photocatalyst which is a nitrogen-containing titanium oxide has no substantial peak at a temperature of 600° C. or above in a mass fragment spectrum obtained by thermal desorption spectroscopy in which the ratio m/e of the mass number m to the electric charged e of ions is 28, and the peak having the smallest half band width is in the range of 400-600° C. in the spectrum. The nitrogen content calculated from the peak appearing at 400 eV±1.0 eV in the N1s shell bonding energy spectrum obtained by XPS measurement of this photocatalyst is at least 20 times larger than the nitrogen content obtained by chemical analysis.
摘要翻译:通过将通过用含氮碱中和酸化钛化合物得到的氧化钛和/或氢氧化钛在大气中进行热处理来制造响应于可见光而具有高光催化活性的可见光的氧化钛光催化剂 含有可水解金属化合物(例如,卤化钛),然后在350℃或更高的温度下在含水量为0.5-4.0体积%的气体中进行额外的热处理。 作为含氮氧化钛的光催化剂在600℃以上的温度下,在通过热解吸光谱法获得的质量碎片光谱中没有显着的峰值,其中质量数m与电荷的比率m / e e的离子是28,并且具有最小半带宽的峰在光谱中在400-600℃的范围内。 在通过该光催化剂的XPS测定得到的N1s壳结合能谱中,以400eV±1.0eV出现的峰计算出的氮含量比通过化学分析获得的氮含量大至少20倍。
摘要:
A highly active titanium oxide photocatalyst of the type responsive to visible light is prepared by subjecting a titanium (hydr)oxide raw material obtained by neutralizing an acidic titanium compound in ammonia or an amine under conditions such that the final pH is 7 or below to heat treatment in an atmosphere containing a hydrolyzable compound followed by contact with water and additional heat treatment at a temperature of at least 350° C. The resulting titanium oxide photocatalyst comprises titanium oxide with a specific surface area of at most 120 m2/g and with the amount of surface hydroxyl groups being at least 600 μeq/g. Preferably the density of surface hydroxyl groups is at least 8 μeq/m2, and the ratio of the amount of terminal type hydroxyl groups (T) to the amount of bridge type hydroxyl groups (B) in the surface hydroxyl groups satisfies T/B≧0.20. This titanium oxide photocatalyst has an ESR spectrum having two types of triplet signal for which the g values of the main spectra are 1.993-2.003 and 2.003-2.011, respectively, and it is also identified by having ratios of the strengths of these signals before irradiation with visible light, under irradiation, and immediately after the stop of irradiation which are different from conventional products.
摘要:
Titanium oxide-based photocatalysts which contain a metal halide in titanium oxide and which are prepared from titanium oxide and/or its precursor, which may optionally be heat treated, by contact with a reactive gas containing a metal halide of the formula MXn or MOXn (wherein M=a metal, X=a halogen, and n=an integer) with heating stably develop a high photocatalytic activity with visible light irradiation. The photocatalysts may subsequently be stabilized by contact with water or by heat treatment, and/or promoted by contact with a heteropoly acid and/or an isopoly acid so as to include a metal complex in the titanium oxide. Photocatalysts prepared in this manner exhibit novel ESR features. The present invention also provides methods for preparing these photocatalysts, a photocatalyst dispersion and a photocatalytic coating fluid containing such a photocatalyst, and photocatalytic functional products and methods for their manufacture using the photocatalyst.
摘要:
Titanium oxide-based photocatalysts which contain a metal halide in titanium oxide and which are prepared from titanium oxide and/or its precursor, which may optionally be heat treated, by contact with a reactive gas containing a metal halide of the formula MXn or MOXn (wherein M=a metal, X=a halogen, and n=an integer) with heating stably develop a high photocatalytic activity with visible light irradiation. The photocatalysts may subsequently be stabilized by contact with water or by heat treatment, and/or promoted by contact with a heteropoly acid and/or an isopoly acid so as to include a metal complex in the titanium oxide. Photocatalysts prepared in this manner exhibit novel ESR features. The present invention also provides methods for preparing these photocatalysts, a photocatalyst dispersion and a photocatalytic coating fluid containing such a photocatalyst, and photocatalytic functional products and methods for their manufacture using the photocatalyst.
摘要:
Titanium oxide-based photocatalysts which contain a metal halide in titanium oxide and which are prepared from titanium oxide and/or its precursor, which may optionally be heat treated, by contact with a reactive gas containing a metal halide of the formula MXn or MOXn (wherein M=a metal, X=a halogen, and n=an integer) with heating stably develop a high photocatalytic activity with visible light irradiation. The photocatalysts may subsequently be stabilized by contact with water or by heat treatment, and/or promoted by contact with a heteropoly acid and/or an isopoly acid so as to include a metal complex in the titanium oxide. Photocatalysts prepared in this manner exhibit novel ESR features. The present invention also provides methods for preparing these photocatalysts, a photocatalyst dispersion and a photocatalytic coating fluid containing such a photocatalyst, and photocatalytic functional products and methods for their manufacture using the photocatalyst.
摘要:
A photocatalytic composite material having a photocatalytic titanium oxide film on the surface of a substrate is produced by a CVD method in which TiCl4 vapor is reacted with water vapor. The TiCl4 vapor and the water vapor are injected into a vapor deposition chamber (9) through nozzles (5) and (6), respectively, such that the resulting two injected vapor streams meet before reaching the substrate, thereby mixing the two vapors. Within 3 seconds after this mixing, the mixed vapors are brought into contact with a substrate (1) which is moving in one direction. Preferably the TiCl4 vapor is injected in a reverse direction with respect to the direction of movement of the substrate through a multi-orifice nozzle (5), while the water vapor is injected through a slit nozzle (6) disposed at a smaller angle with respect to the substrate.