摘要:
Provided is a scanning electron microscope equipped with a high-speed and high-precision astigmatism measuring means to be used when both astigmatism generated by an electron-beam column and astigmatism generated from the surroundings of a measuring sample exist. This scanning electron microscope is characterized in controlling an astigmatism corrector (201) with high-speed and high-precision, to correct the astigmatism, by using both a method of obtaining the astigmatism from the qualities of two-dimensional images to be acquired upon changing the intensity of the astigmatism corrector (201), and a method of measuring the astigmatism from the change in the position displacement of an electron beam that occurs when the electron beam is tilted using a tilt deflector (202).
摘要:
An amount of pattern position displacement between observation images acquired by irradiating from two different directions is changed depending on beam deflection for moving an image acquisition position. In a pattern evaluation method that measures astigmatic difference or focus position displacement having a small amount of dose at a high speed using parallax caused by the tilted beam, a correction value obtained in advance by measurement is reflected in an amount of pattern position displacement between observation images obtained by irradiating from at least two different directions and generated in accordance with the amount of beam deflection for moving an image acquisition position. A processing unit calculates an amount of correction of an amount of pattern position displacement depending on beam deflection of a beam deflecting unit for moving an image acquisition position on the sample at a high speed.
摘要:
An amount of pattern position displacement between observation images acquired by irradiating from two different directions is changed depending on beam deflection for moving an image acquisition position. In a pattern evaluation method that measures astigmatic difference or focus position displacement having a small amount of dose at a high speed using parallax caused by the tilted beam, a correction value obtained in advance by measurement is reflected in an amount of pattern position displacement between observation images obtained by irradiating from at least two different directions and generated in accordance with the amount of beam deflection for moving an image acquisition position. A processing unit calculates an amount of correction of an amount of pattern position displacement depending on beam deflection of a beam deflecting unit for moving an image acquisition position on the sample at a high speed.
摘要:
Provided is a scanning electron microscope equipped with a high-speed and high-precision astigmatism measuring means to be used when both astigmatism generated by an electron-beam column and astigmatism generated from the surroundings of a measuring sample exist. This scanning electron microscope is characterized in controlling an astigmatism corrector (201) with high-speed and high-precision, to correct the astigmatism, by using both a method of obtaining the astigmatism from the qualities of two-dimensional images to be acquired upon changing the intensity of the astigmatism corrector (201), and a method of measuring the astigmatism from the change in the position displacement of an electron beam that occurs when the electron beam is tilted using a tilt deflector (202).
摘要:
It is to provide a technology that can quickly process many measurement points on a substrate by a primary charged particle beam. In a control system, with respect to each measurement point (irradiation position of the primary charged particle beam) on a wafer, a calculator obtains a probability of a surface potential at a relevant measurement point that is obtained from a surface potential distribution function of the wafer and is stored in a data storage unit. Based on the probability, the calculator determines an amplitude of a set parameter (for example, retarding voltage) of charged particle optics at the relevant measurement point. Then the calculator checks the focus state of the primary charged particle beam by changing the set parameter in the range of the determined amplitude, and determines the set parameter to be used for measurement.
摘要:
The astigmatism control processing time is decreased to 1 second or less by improving the astigmatic difference measurement accuracy. A charged particle beam device includes: a stage on which a sample is loaded; a transport mechanism which carries the sample onto the stage; a charged particle beam optical system which irradiates the sample on the stage with a charged particle beam and detects secondary charged particles generated from the sample; and a controller which determines setup parameters for the charged particle beam optical system and controls the charged particle beam optical system. The controller registers and holds electro-optical system setup parameters for irradiation with a beam tilted from a normal line on the sample as the charged particle beam, compares observation images obtained by the tilted beam, measures the amount and direction of movement and calculates the amount of astigmatism correction from the amount of movement and the direction.
摘要:
The astigmatism control processing time is decreased to 1 second or less by improving the astigmatic difference measurement accuracy. A charged particle beam device includes: a stage on which a sample is loaded; a transport mechanism which carries the sample onto the stage; a charged particle beam optical system which irradiates the sample on the stage with a charged particle beam and detects secondary charged particles generated from the sample; and a controller which determines setup parameters for the charged particle beam optical system and controls the charged particle beam optical system. The controller registers and holds electro-optical system setup parameters for irradiation with a beam tilted from a normal line on the sample as the charged particle beam, compares observation images obtained by the tilted beam, measures the amount and direction of movement and calculates the amount of astigmatism correction from the amount of movement and the direction.
摘要:
The present invention provides a pattern inspection technique that enables measurement and inspection of a fine pattern by a charged particle beam to be performed with high throughput. A metrology system of fine pattern according to the pattern inspection technique has: a the column that includes a charged particle source, an electron optics for scanning a desired observation area on a sample with a charged particle beam emitted from the charged particle source, and a detector for detecting charged particles generated secondarily from the sample scanned by the charged particle beam; information processing means for measuring information about geometry of a pattern formed on the sample based on information on the intensity of the charged particles obtained by the detector; and a sample introduction unit for introducing the sample into the inside of the column; wherein a charge neutralizer unit for generating ions and charge neutralizing the sample with the ions and surface potential measuring means for measuring a surface potential of the sample surface are provided on a path that is inside the sample introduction unit and transports the sample to the column.
摘要:
It is to provide a technology that can quickly process many measurement points on a substrate by a primary charged particle beam. In a control system, with respect to each measurement point (irradiation position of the primary charged particle beam) on a wafer, a calculator obtains a probability of a surface potential at a relevant measurement point that is obtained from a surface potential distribution function of the wafer and is stored in a data storage unit. Based on the probability, the calculator determines an amplitude of a set parameter (for example, retarding voltage) of charged particle optics at the relevant measurement point. Then the calculator checks the focus state of the primary charged particle beam by changing the set parameter in the range of the determined amplitude, and determines the set parameter to be used for measurement.
摘要:
The present invention provides a pattern inspection technique that enables measurement and inspection of a fine pattern by a charged particle beam to be performed with high throughput. A metrology system of fine pattern according to the pattern inspection technique has: a the column that includes a charged particle source, an electron optics for scanning a desired observation area on a sample with a charged particle beam emitted from the charged particle source, and a detector for detecting charged particles generated secondarily from the sample scanned by the charged particle beam; information processing means for measuring information about geometry of a pattern formed on the sample based on information on the intensity of the charged particles obtained by the detector; and a sample introduction unit for introducing the sample into the inside of the column; wherein a charge neutralizer unit for generating ions and charge neutralizing the sample with the ions and surface potential measuring means for measuring a surface potential of the sample surface are provided on a path that is inside the sample introduction unit and transports the sample to the column.