摘要:
A method to make a self-aligned floating gate in a memory device. The method patterns the floating gate (FG) using the trench etch for the shallow trench isolation (STI). Because the floating gate (FG) is adjacent to the raised STI, sharp corners are eliminated between the FG and CG thereby increasing the effectiveness of the intergate dielectric layer. The method includes: forming an first dielectric layer (gate oxide) and a polysilicon layer over a substrate, etching through the first dielectric oxide layer and the polysilicon layer and into the substrate to form a trench. The remaining first dielectric layer and polysilicon layer function as a tunnel dielectric layer and a floating gate. The trench is filled with an isolation layer. The masking layer is removed. An intergate dielectric layer and a control gate are formed over the floating gate and the isolation layer.
摘要:
A method for forming an L-shaped spacer using a sacrificial organic top coating, then using the L-shaped spacer to simultaneously implant lightly doped source and drain extensions through the L-shaped spacer while implanting source and drain regions beyond the L-shaped spacer. A semiconductor structure is provided having a gate structure thereon. A liner oxide layer is formed on the gate structure. A dielectric spacer layer is formed on the liner oxide layer. In the preferred embodiments, the dielectric spacer layer comprises a silicon nitride layer or a silicon oxynitride layer. A sacrificial organic layer is formed on the dielectric spacer layer. The sacrificial organic layer and the dielectric spacer layer are anisotropically etched to form spacers comprising a triangle-shaped sacrificial organic structure and an L-shaped dielectric spacer. The triangle-shaped sacrificial organic structure is removed leaving an L-shaped dielectric spacer. Impurity ions are implanted into the surface of the semiconductor structure forming lightly doped source and drain extensions where the ions are implanted through the L-shaped spacer, and forming source and drain regions beyond the L-shaped spacer where the ions are implanted without passing through the L-shaped spacer.
摘要:
The present invention provides a method of manufacturing a lightly doped drain (LDD) structure using a polymer layer to define the LDD. The polymer layer is formed in an etch step which defines the gate electrode. The method begins by forming spaced field oxide regions 12 in a substrate 10. Next, a gate oxide layer 14, and a material layer 18 and a hard mask layer 22 are sequentially formed over the active area and the field oxide regions 12. A photo resist block 24 is formed over the hard mask layer 22 over the active area. The hard mask layer 22 is etched using the photo resist block 24 as a mask forming a hard mask block 22. The etch simultaneously forms a polymer layer 26 over the a top and sidewalls of the photo resist block 24 and over the sidewalls of the hard mask block. Impurities ions are implanted into the substrate in the active area using the polymer layer 26 as a mask forming highly doped drain regions 30 in the substrate 10. Next, the photo resist block 24 and the polymer layer 26 are removed. The hard mask is used as an etch barrier to etch the gate material to form a gate electrode 19 between the lightly doped drains. Subsequently, impurities ions are implanted into the substrate in the active area using the hard mask block 23 as a mask forming lightly doped drain regions 34 in the substrate 10.
摘要:
A method for forming an extended metal gate without poly wrap around effects. A semiconductor structure is provided having a gate structure thereon. The gate structure comprising a gate dielectric layer, a gate silicon layer, a doped silicon oxide layer, and a disposable gate layer stacked sequentially. Spacers are formed on the sidewalls of the gate structure. A dielectric gapfill layer is formed over the semiconductor structure and the gate structure and planarized, stopping on the disposable gate layer. A first silicon nitride layer is formed over the disposable gate layer, and a dielectric layer is formed over the first silicon nitride layer. The dielectric layer is patterned to form a trench over the gate structure; wherein the trench has a width greater than the width of the gate structure. The first silicon nitride layer in the bottom of the trench and the disposable gate layer are removed using one or more selective etching processes. The doped silicon oxide layer is removed using an etch with a high selectivity of doped silicon oxide to undoped silicon oxide. A barrier layer is formed over the gate silicon layer, and a metal gate layer is formed on the barrier layer; whereby the metal gate layer has a greater width than the gate structure.
摘要:
A method for forming an extended metal gate without poly wrap around effects. A semiconductor structure is provided having a gate structure thereon. The gate structure comprising a gate dielectric layer, a gate silicon layer, a doped silicon oxide layer, and a disposable gate layer stacked sequentially. Spacers are formed on the sidewalls of the gate structure. A dielectric gapfill layer is formed over the semiconductor structure and the gate structure and planarized, stopping on the disposable gate layer. A first silicon nitride layer is formed over the disposable gate layer, and a dielectric layer is formed over the first silicon nitride layer. The dielectric layer is patterned to form a trench over the gate structure; therein the trench has a width greater than the width of the gate structure. The first silicon nitride layer in the bottom of the trench and the disposable gate layer are removed using one or more selective etching processes. The doped silicon oxide layer is removed using an etch with a high selectivity of doped silicon oxide to undoped silicon oxide. A barrier layer is formed over the gate silicon layer, and a metal gate layer is formed on the barrier layer; whereby the metal gate layer has a greater width than the gate structure.
摘要:
A method for fabrication of a lightly-doped-drain (LDD) structure for self aligned polysilicon gate MOSFETs is described wherein a polymer layer, formed along the sidewall during the patterning process of the polysilicon gate electrode, is used to mask the source/drain ion implant. The sidewall polymer layer replaces the conventional silicon oxide sidewall as an LDD spacer and offers improved thickness control as well as an improved sequence of processing steps whereby the deposition of a spacer oxide layer onto the gate oxide is eliminated. A cap oxide layer first deposited over the gate polysilicon layer. This oxide layer is then patterned and etched using RIE under conditions which form a polymer sidewall layer along the edges of the cap oxide pattern. The polysilicon layer is then etched, and has a pattern concentric with the cap oxide pattern but wider by the thickness of the polymer sidewall. After removal of the polymer and residual photoresist, the source/drain implant is performed, followed by removal of the polysilicon lip by RIE using the cap oxide as a mask. The LDD implant is then performed.
摘要:
A method for forming device features with reduced line end shortening (LES) includes trimming the device feature to achieve the desired sub-ground rule critical dimension during the etch to form the device feature.
摘要:
The present invention provides a method of annealing a semiconductor by applying a temperature-dependant phase switch layer to a semiconductor structure. The temperature-dependant phase switch layer changes phase from amorphous to crystalline at a predetermined temperature. When the semiconductor structure is annealed, electromagnetic radiation passes through the temperature-dependant phase switch layer before reaching the semiconductor structure. When a desired annealing temperature is reached the temperature-dependant phase switch layer substantially blocks the electromagnetic radiation from reaching the semiconductor structure. As a result, the semiconductor is annealed at a consistent temperature across the wafer. The temperature at which the temperature-dependant phase switch layer changes phase can be controlled by an ion implantation process.
摘要:
A transistor having an epitaxial channel and a method for fabricating a semiconductor device having an epitaxial channel, the method including forming a hardmask on a substrate and forming an opening in the hardmask. The opening is geometrically characterized by a long dimension and a short dimension, and the opening is arranged in a predetermined manner relative to the channel region of a transistor. An epitaxial material is formed in the opening that induces strain in substrate regions proximate to the epitaxial material. The epitaxial material is confined to the opening, such that an epitaxial channel is formed. A transistor is fabricated in proximity to the epitaxial channel, such that the strain induced in the substrate provides enhanced transistor performance. By confining the epitaxial material to a predefined channel in the substrate, plastic strain relaxation of the epitaxial material is minimized and a maximum amount of strain is induced in the substrate.
摘要:
A transistor having an epitaxial channel and a method for fabricating a semiconductor device having an epitaxial channel, the method including forming a hardmask on a substrate and forming an opening in the hardmask. The opening is geometrically characterized by a long dimension and a short dimension, and the opening is arranged in a predetermined manner relative to the channel region of a transistor. An epitaxial material is formed in the opening that induces strain in substrate regions proximate to the epitaxial material. The epitaxial material is confined to the opening, such that an epitaxial channel is formed. A transistor is fabricated in proximity to the epitaxial channel, such that the strain induced in the substrate provides enhanced transistor performance. By confining the epitaxial material to a predefined channel in the substrate, plastic strain relaxation of the epitaxial material is minimized and a maximum amount of strain is induced in the substrate.