摘要:
A concentric face gear assembly includes a first face gear having first face gear teeth and second face gear having second face gear teeth. At least one input pinion contacts both the first face gear teeth and the second face gear teeth, and at least one idler pinion contacts both the first face gear teeth and the second face gear teeth. The first face gear is adapted for directly driving a rotor, but the second face gear is not adapted for directly driving a rotor. The load carried by the first face gear includes the force needed to drive the rotor. Since it does not drive a rotor, the second face gear does not comprise a web or spline attachment and is therefore lightweight. Both the first face gear and the second face gear include thrust bearings, which are located radially outwardly of the first face gear teeth and radially inwardly of the second face gear teeth. The first face gear includes a web, which is relatively thin due to the thrust bearing of the first face gear being located radially outwardly of the first face gear teeth rather than radially inwardly of the first face gear teeth.
摘要:
A shaft deflection controller includes an input driveshaft adapted for inputting power from an engine. The input driveshaft includes an axis of rotation and a spur pinion at an end of the input driveshaft. The axis of rotation of the input driveshaft changes, relative to a frame, with deflections of the input driveshaft. Two face gears are adapted for meshing with the spur pinion of the input driveshaft. A flexible shaft stabilizing mount includes an inner sleeve portion and a mounting flange. The inner sleeve portion includes a base portion connecting the inner sleeve portion to the mounting flange and a plurality of cage spring members. The mounting flange is connected to and concentric with the inner sleeve portion. The flexible shaft stabilizing mount controls the deflection of the input driveshaft by applying forces onto the input driveshaft, which tend to resist changes in the alignment of the axis of rotation of the input driveshaft. The flexible shaft stabilizing mount is connected to a rigid frame. An inner surface portion of a stiffening ring contains a curvature and surrounds and contacts the inner sleeve portion of the flexible shaft stabilizing mount.
摘要:
A method of assembling a head stack assembly of a magnetic storage drive is provided. The method includes attaching a flexible printed circuit (FPC) with a suspension tail of a head gimbal assembly, wherein the suspension tail includes a plurality of discrete segments positioned within a bonding area and other portions of a structural layer outside of the bonding area, and pressing tail bond pads of the suspension tail against corresponding ones of FPC bond pads of the FPC by bringing a single flat surface of a thermode in contact with each of the discrete segments.
摘要:
A method of assembling a head stack assembly (HSA) includes securing a flex cable to an actuator including an actuator arm having a side slot with a slot end. A first head gimbal assembly (HGA) is attached to the actuator arm. The first HGA includes a first laminated flexure having a first flexure tail with a first raised region that includes an out-of-plane bend. The first raised region is squeezed while inserting the first flexure tail partially within the side slot with the first raised region adjacent the slot end. The first raised region is allowed to expand into contact with the side slot adjacent the slot end. The first flexure tail is electrically connected to the flex cable.
摘要:
Disclosed herein are embodiments directed to a head gimbal assembly including a novel suspension assembly that includes a flexure tail with a first plurality of apertures in its structural layer. Each of the first plurality of apertures underlies a first trace but not a second trace. Each of a second plurality of apertures in the structural layer underlies a second trace but not the first trace. Each of the first plurality of apertures includes a corresponding region of maximum width, and each of the second plurality of apertures includes a corresponding region of maximum width, as measured in the width direction. None of the corresponding regions of maximum width of the first plurality of apertures is disposed in an overlapping position along the long axis as any of the corresponding regions of maximum width of the second plurality of apertures.
摘要:
A disk drive suspension assembly. The suspension assembly includes a load beam and a base plate with a longitudinal axis. The base plate includes an actuator arm and an opposing actuator arm end. The head gimbal end is disposed in mechanical communication with the load beam for distally supporting the load beam. The head gimbal end defines opposing first and second distal corners. The base plate includes first and second mass reduction openings formed through the base plate symmetrically about the longitudinal axis at the head gimbal end for locally reducing mass to mitigate torsional vibration mode frequency about the longitudinal axis. The first mass reduction opening is disposed at the head gimbal end between the first distal corner and the longitudinal axis. The second mass reduction opening is disposed at the head gimbal end between the second distal corner and the longitudinal axis.
摘要:
A novel suspension assembly includes a flexure tail with a first plurality of apertures in its structural layer. Each of the first plurality of apertures underlies a first trace but not a second trace. Each of a second plurality of apertures in the structural layer underlies a second trace but not the first trace. Each of the first plurality of apertures includes a corresponding region of maximum width, and each of the second plurality of apertures includes a corresponding region of maximum width, as measured in the width direction. None of the corresponding regions of maximum width of the first plurality of apertures is disposed in an overlapping position along the long axis as any of the corresponding regions of maximum width of the second plurality of apertures.
摘要:
A disk drive suspension assembly includes a load beam, a first hinge arm, a second hinge arm, a base plate, and a flexure that includes a head mounting surface. The base plate has a first base plate layer that includes a first base plate side and an opposing second base plate side. The first base plate side has a main base plate surface and a recessed base plate surface parallel to and offset from the main base plate surface. A first hinge arm is attached to the main base plate surface. A second hinge arm is attached to the recessed base plate surface. The first and second hinge arms are attached to the load beam. The base plate has a first thickness at the main base plate surface and a second thickness at the recessed base plate surface that is the same as the first thickness.
摘要:
A method of manufacturing a microactuator. The method includes providing a sheet of a piezoelectric material having an electrically conductive layer on at least one side of the sheet. The method includes cutting the sheet to form a plurality of piezoelectric elements. Each of the piezoelectric elements includes a first element side with an electrically conductive layer. Each first element side includes a peripheral portion and an exposed portion interior to the peripheral portion. The method includes forming an encapsulation layer over the peripheral portion and not over the exposed portion of at least one of the sides. The encapsulation layer comprises a material of lesser electrical conductivity than the electrically conductive layer. An apparatus for manufacturing the microactuators may also be provided that includes a first fixture and first and second alignment combs.
摘要:
A novel head stack assembly (HSA), and method for HSA assembly, are disclosed and claimed. A first flexure tail has a long axis approximately parallel to a side of the actuator arm. The actuator arm includes a slot in the side having a slot end. The first flexure tail is disposed partially within the slot. The first flexure tail includes a first raised region in contact with the slot adjacent the slot end. The first raised region includes an out-of-plane bend with cross-sectional curvature along the long axis. The first raised region may be squeezed while inserting the first flexure tail partially within the side slot, with the first raised region adjacent the slot end, and then allowed to expand into contact with the slot adjacent the slot end.