摘要:
A plasma display panel (PDP) includes an EMI filter at a front portion thereof for blocking/shielding substantial amounts of electromagnetic waves. The filters has high visible transmission, and is capable of blocking/shielding electromagnetic waves. In certain example embodiments, a silver based coating of the EMI filter reduces damage from EMI radiation through highly conductive Ag layers, blocks significant amounts of NIR and IR radiation from outdoor sunlight to reduce PDP panel temperature, and enhances contrast ratio through reduced reflection, while maintaining high visible transmission. In certain example embodiments, at least one layer of or including silicon nitride may be Si-rich, and/or at least one layer including an oxide of Ni and/or Cr may be a suboxide, in order to improve heat treatability of the coated article.
摘要:
Certain example embodiments of this invention relate to an electrode (e.g., front electrode) for use in a photovoltaic device or the like. In certain example embodiments, a transparent conductive oxide (TCO) of the front electrode for use in a photovoltaic device is of or includes titanium oxide doped with one or more of Nb, Zn and/or Al. Additional layers may also be provided in the front electrode in certain example embodiments. It has been found that the use of transparent conductive TiOx(:Nb) or TiZnOx(:Al and/or Nb), in a front electrode of a photovoltaic device, is advantageous in that such materials have a high refractive index (n) and have a higher transparency than conventional titanium suboxide (TiOx). Thus, the use of such materials in the context of a front electrode of a photovoltaic device reduces light reflection due to the high refractive index, and increases transmission into the active semiconductor film due to the higher transmission characteristics thereof, thereby improving the efficiency of the device.
摘要:
This invention relates to a photovoltaic device including an electrode such as a front electrode/contact. In certain example embodiments, the front electrode of the photovoltaic device includes a multi-layered transparent conductive coating which is sputter-deposited on a textured surface of a patterned glass substrate. In certain example embodiments, a maximum transmission area of the substantially transparent conductive front electrode is located under a peak area of a quantum efficiency (QE) curve of the photovoltaic device and a light source spectrum used to power the photovoltaic device.
摘要:
This invention relates to a front electrode/contact for use in an electronic device such as a photovoltaic device. In certain example embodiments, the front electrode of a photovoltaic device or the like includes a multilayer coating including at least one transparent conductive oxide (TCO) layer (e.g., of or including a material such as tin oxide, zinc oxide, or the like) and at least one conductive substantially metallic IR reflecting layer (e.g., based on silver, gold, or the like). In certain example instances, the multilayer front electrode coating may include a plurality of TCO layers and/or a plurality of conductive substantially metallic IR reflecting layers arranged in an alternating manner in order to provide for reduced visible light reflection, increased conductivity, and/or increased infrared (IR) reflection capability.
摘要:
A backlit transmissive liquid crystal display including non-linear resistive thin film diodes (TFDs). Select address lines on the active substrate provide both conventional address line functionality, as well as acting as one of the electrodes for each thin film diode. Two such diodes are provided in each pixel in certain embodiments. Still further, black matrix material is provided between the aforesaid address line material and the substrate so as to form rows of stacks on the active substrate. The thin film diode semi-insulating material, the address line material, and the black matrix material are patterned together in a single step to form elongated rows (or columns) on the active substrate. In such a manner, the display has reduced ambient light reflections, and reduce photosensitivity. Furthermore, because the pixel electrode, which also functions as the top TFD electrode in each pixel, overlaps both the select lines and portions of the color filter, a high pixel aperture ratio of at least about 70% is provided. The TFDs may be MIM diodes in certain embodiments.
摘要:
A coated article includes a temperable antireflection (AR) coating that utilizes medium and low index (index of refraction “n”) layers having compressive residual stress in the AR coating. In certain example embodiments, the coating may include the following layers from the glass substrate outwardly: silicon oxynitride (SiOxNy) medium index layer/high index layer/low index layer. In certain example embodiments, depending on the chemical and optical properties of the high index layer and the substrate, the medium and low index layers of the AR coating are selected to cause a net compressive residual stress and thus optimize the overall performance of the antireflection coating when the coated article is tempered and/or heat-treated.
摘要翻译:涂覆制品包括使用在AR涂层中具有压缩残余应力的中等和低折射率(折射率“n”)层的可回火抗反射(AR)涂层。 在某些示例性实施例中,涂层可以包括从玻璃基板向外的以下层:氮氧化硅(SiO x N y)介质折射率层/高折射率层/低折射率层。 在某些示例性实施方案中,根据高折射率层和基底的化学和光学性质,选择AR涂层的介质和低折射率层以产生净压缩残余应力,从而优化抗反射涂层的整体性能 当涂层制品回火和/或热处理时。
摘要:
A plasma display panel (PDP) includes an EMI filter at a front portion thereof for blocking/shielding substantial amounts of electromagnetic waves. The filters has high visible transmission, and is capable of blocking/shielding electromagnetic waves. In certain example embodiments, a silver based coating of the EMI filter reduces damage from EMI radiation through highly conductive Ag layers, blocks significant amounts of NIR and IR radiation from outdoor sunlight to reduce PDP panel temperature, and enhances contrast ratio through reduced reflection, while maintaining high visible transmission. In certain example embodiments, at least one layer of or including silicon nitride may be Si-rich, and/or at least one layer including an oxide of Ni and/or Cr may be a suboxide, in order to improve heat treatability of the coated article.
摘要:
A plasma display panel (PDP) includes an EMI filter at a front portion thereof for blocking/shielding substantial amounts of electromagnetic waves. The filters has high visible transmission, and is capable of blocking/shielding electromagnetic waves. In certain example embodiments, a silver based coating of the EMI filter reduces damage from EMI radiation through highly conductive Ag layers, blocks significant amounts of NIR and IR radiation from outdoor sunlight to reduce PDP panel temperature, and enhances contrast ratio through reduced reflection, while maintaining high visible transmission. In certain example embodiments, at least one layer of or including silicon nitride may be Si-rich, and/or at least one layer including an oxide of Ni and/or Cr may be a suboxide, in order to improve heat treatability of the coated article.
摘要:
This invention relates to a front electrode/contact for use in an electronic device such as a photovoltaic device. In certain example embodiments, the front electrode of a photovoltaic device or the like includes a multilayer coating including at least one transparent conductive oxide (TCO) layer (e.g., of or including a material such as tin oxide, ITO, zinc oxide, or the like) and/or at least one conductive substantially metallic IR reflecting layer (e.g., based on silver, gold, or the like). In certain example instances, the multilayer front electrode coating may include one or more conductive metal(s) oxide layer(s) and/or one or more conductive substantially metallic IR reflecting layer(s) in order to provide for reduced visible light reflection, increased conductivity, cheaper manufacturability, and/or increased infrared (IR) reflection capability.
摘要:
This invention relates to a photovoltaic device including an electrode such as a front electrode/contact. In certain example embodiments, the front electrode of the photovoltaic device includes a multi-layered transparent conductive coating which is sputter-deposited on a textured surface of a patterned glass substrate. In certain example embodiments, a maximum transmission area of the substantially transparent conductive front electrode is located under a peak area of a quantum efficiency (QE) and/or QEx (photon flux of solar radiation) curve of the photovoltaic device and a light source spectrum used to power the photovoltaic device. In certain example embodiments, the front electrode includes a transparent conductive layer of or including one or more of (i) titanium zinc oxide doped with aluminum and/or niobium, and/or (ii) titanium niobium oxide.