摘要:
According to one embodiment, a differential magnetoresistive effect element comprises a first magnetoresistive effect element having a first pinning layer, a first intermediate layer, and a first free layer. The differential magnetoresistive effect element also comprises a second magnetoresistive effect element stacked via a spacer layer above the first magnetoresistive effect element, the second magnetoresistive effect element having a second pinning layer, a second intermediate layer, and a second free layer. The first magnetoresistive effect element and the second magnetoresistive effect element show in-opposite-phase resistance change in response to a magnetic field in the same direction, and tp2>tp1 is satisfied when a thickness of the first pinning layer is tp1, and a thickness of the second pinning layer is tp2. In another embodiment, the first and second magnetoresistive effect elements may be CPP-GMR elements. Other elements, heads, and magnetic recording/reading devices are described according to other embodiments.
摘要:
According to one embodiment, a differential magnetoresistive effect element comprises a first magnetoresistive effect element having a first pinning layer, a first intermediate layer, and a first free layer. The differential magnetoresistive effect element also comprises a second magnetoresistive effect element stacked via a spacer layer above the first magnetoresistive effect element, the second magnetoresistive effect element having a second pinning layer, a second intermediate layer, and a second free layer. The first magnetoresistive effect element and the second magnetoresistive effect element show in-opposite-phase resistance change in response to a magnetic field in the same direction, and tp2>tp1 is satisfied when a thickness of the first pinning layer is tp1, and a thickness of the second pinning layer is tp2. In another embodiment, the first and second magnetoresistive effect elements may be CPP-GMR elements. Other elements, heads, and magnetic recording/reading devices are described according to other embodiments.
摘要:
In one embodiment, a differential-type magnetic read head includes a differential-type magneto-resistive-effect film formed on a substrate, and a pair of electrodes for applying current in a direction perpendicular to a film plane of the film. The film includes a first and second stacked film, each having a pinned layer, an intermediate layer, and a free layer, with the second stacked film being formed on the first stacked film. A side face in a track width direction of the film is shaped to have an inflection point at an intermediate position in a thickness direction of the film, and the side face is shaped to be approximately vertical to the substrate in an upward direction of the substrate from the inflection point. Also, the side face is shaped to be gradually increased in track width as approaching the substrate in a downward direction of the substrate from the inflection point.
摘要:
In one embodiment, a differential-type magnetic read head includes a differential-type magneto-resistive-effect film formed on a substrate, and a pair of electrodes for applying current in a direction perpendicular to a film plane of the film. The film includes a first and second stacked film, each having a pinned layer, an intermediate layer, and a free layer, with the second stacked film being formed on the first stacked film. A side face in a track width direction of the film is shaped to have an inflection point at an intermediate position in a thickness direction of the film, and the side face is shaped to be approximately vertical to the substrate in an upward direction of the substrate from the inflection point. Also, the side face is shaped to be gradually increased in track width as approaching the substrate in a downward direction of the substrate from the inflection point.
摘要:
Provided is a differential type reproduction head which can obtain a preferable bit error rate without causing a baseline shift even when two magnetoresistive elements have different maximum resistance change amounts. The differential type reproduction head has a layered structure formed by a first magnetoresistive element having a first free layer, a differential gap layer, and a second magnetoresistive element having a second free layer. When DR1 and DR2 are the maximum resistance change amounts of the first magnetoresistive element and the second magnetoresistive element, respectively, HB1 is a magnetic domain control field applied to the first free layer, and HB2 is a magnetic domain control field applied to the second free layer, the following relationships are satisfied: HB1>HB2 when DR1>DR2; HB2>HB1 when DR2>DR1.
摘要:
Embodiments of the present invention help to reduce mag-noise in a magnetoresistive head without deterioration in reproduced output and improve the signal/noise ratio (SNR) of the magnetoresistive head. According to one embodiment, the magnetoresistive head uses a synthetic ferri free layer and it is arranged such that the magnetic field which is applied to an end of a free layer with smaller film thickness and saturation magnetization in the track width direction by a coupling field is larger than the magnetic field which is applied to it by a bias layer.
摘要:
A magnetoresistive head which has a high head SNR by reducing generated mag-noise without deteriorating an output comprises, according to one embodiment, a magnetoresistive sensor having a laminated structure which includes an antiferromagnetic layer, a magnetization pinned layer, a non-magnetic intermediate layer, a magnetization free layer, and a magnetization stable layer arranged adjacent to the magnetization free layer. The magnetization stable layer comprises non-magnetic coupling layer, a first ferromagnetic stable layer, an antiparallel coupling layer, and a second ferromagnetic stable layer. A magnetization quantity of a first ferromagnetic stable layer and a second ferromagnetic stable layer are substantially equal, and the magnetization of the first ferromagnetic stable layer and the second ferromagnetic stable layer are magnetically coupled in the antiparallel direction from each other. The magnetizations of the first ferromagnetic stable layer and the free layer are coupled in an antiferromagnetic or a ferromagnetic alignment.
摘要:
A magnetoresistive head which has a high head SNR by reducing generated mag-noise without deteriorating an output comprises, according to one embodiment, a magnetoresistive sensor having a laminated structure which includes an antiferromagnetic layer, a magnetization pinned layer, a non-magnetic intermediate layer, a magnetization free layer, and a magnetization stable layer arranged adjacent to the magnetization free layer. The magnetization stable layer comprises non-magnetic coupling layer, a first ferromagnetic stable layer, an antiparallel coupling layer, and a second ferromagnetic stable layer. A magnetization quantity of a first ferromagnetic stable layer and a second ferromagnetic stable layer are substantially equal, and the magnetization of the first ferromagnetic stable layer and the second ferromagnetic stable layer are magnetically coupled in the antiparallel direction from each other. The magnetizations of the first ferromagnetic stable layer and the free layer are coupled in an antiferromagnetic or a ferromagnetic alignment.
摘要:
Embodiments of the present invention help to reduce mag-noise in a magnetoresistive head without deterioration in reproduced output and improve the signal/noise ratio (SNR) of the magnetoresistive head. According to one embodiment, the magnetoresistive head uses a synthetic ferri free layer and it is arranged such that the magnetic field which is applied to an end of a free layer with smaller film thickness and saturation magnetization in the track width direction by a coupling field is larger than the magnetic field which is applied to it by a bias layer.
摘要:
In high frequency magnetic assisted recording technique, a spin torque oscillator that stably oscillates at a low current and a magnetic recording head with high recording density are provided. In a magnetic recording head including an oscillator that generates a high frequency magnetic field, a spin injection layer structure of two laminated magnetic layers which are coupled to be anti-parallel is adopted. A product Ms×t of the saturated magnetization Ms and the film thickness t of the first magnetic layer close to a field generation layer is smaller than a product Ms×t of the second magnetic layer remote from the field generation layer.