摘要:
According to one embodiment, a differential magnetoresistive effect element comprises a first magnetoresistive effect element having a first pinning layer, a first intermediate layer, and a first free layer. The differential magnetoresistive effect element also comprises a second magnetoresistive effect element stacked via a spacer layer above the first magnetoresistive effect element, the second magnetoresistive effect element having a second pinning layer, a second intermediate layer, and a second free layer. The first magnetoresistive effect element and the second magnetoresistive effect element show in-opposite-phase resistance change in response to a magnetic field in the same direction, and tp2>tp1 is satisfied when a thickness of the first pinning layer is tp1, and a thickness of the second pinning layer is tp2. In another embodiment, the first and second magnetoresistive effect elements may be CPP-GMR elements. Other elements, heads, and magnetic recording/reading devices are described according to other embodiments.
摘要:
According to one embodiment, a differential magnetoresistive effect element comprises a first magnetoresistive effect element having a first pinning layer, a first intermediate layer, and a first free layer. The differential magnetoresistive effect element also comprises a second magnetoresistive effect element stacked via a spacer layer above the first magnetoresistive effect element, the second magnetoresistive effect element having a second pinning layer, a second intermediate layer, and a second free layer. The first magnetoresistive effect element and the second magnetoresistive effect element show in-opposite-phase resistance change in response to a magnetic field in the same direction, and tp2>tp1 is satisfied when a thickness of the first pinning layer is tp1, and a thickness of the second pinning layer is tp2. In another embodiment, the first and second magnetoresistive effect elements may be CPP-GMR elements. Other elements, heads, and magnetic recording/reading devices are described according to other embodiments.
摘要:
Embodiments of the present invention provides sufficiently high exchange coupling with a magnetic layer and improve the yield and reliability of a magnetoresistive head. By using a tilted growth crystalline structured antiferromagnetic film manufactured by an oblique incident deposition method, a high exchange coupling field with a ferromagnetic film can be obtained. As a result, excellent reliability and high output can be obtained in a magnetoresistive head utilizing features in accordance with embodiments of the present invention.
摘要:
A magnetoresistive magnetic head according to one embodiment uses a current-perpendicular-to-plane magnetoresistive element having a laminate of a free layer, an intermediate layer, and a pinned layer, the pinned layer being substantially fixed to a magnetic field to be detected, wherein either the pinned layer or the free layer includes a Heusler alloy layer represented by a composition of X-Y-Z, wherein X is between about 45 at. % and about 55 at. % and is Co or Fe, Y accounts for between about 20 at. % and about 30 at. % and is one or more elements selected from V, Cr, Mn, and Fe, and Z is between about 20 at. % and about 35 at. % and is one or more elements selected from Al, Si, Ga, Ge, Sn, and Sb, the other layer including a high saturation magnetization material layer having higher saturation magnetization than that of the Heusler alloy, and where the direction of the current flowing perpendicular to plane being a direction in which an electron flows from the Heusler alloy layer into the high saturation magnetization material layer. Additional embodiments are also presented.
摘要:
Embodiments of the present invention help to provide a single element type differential magnetoresistive magnetic head capable of achieving high resolution and high manufacturing stability. According to one embodiment, a magnetoresistive layered film is formed by stacking an underlayer film, an antiferromagnetic film, a ferromagnetic pinned layer, a non-magnetic intermediate layer, a soft magnetic free layer, a long distance antiparallel coupling layered film, and a differential soft magnetic free layer. The long distance antiparallel coupling layered film exchange-couples the soft magnetic free layer and the differential soft magnetic free layer in an antiparallel state with a distance of about 3 nanometers through 20 nanometers. By manufacturing the single element type differential magnetoresistive magnetic head using the magnetoresistive layered film, it becomes possible to achieve the high resolution and the high manufacturing stability without spoiling the GMR effect.
摘要:
Embodiments of the present invention provide a magnetic head incorporating a CPP-GMR device having a high output at a suitable resistance. According to one embodiment, in a Current Perpendicular to Plane-Giant Magneto Resistive (CPP-GMR) head comprising a pinned layer, a free layer, and a current screen layer for confining current therein, a planarization treatment is applied to the surface of the current screen layer, thereby allowing the current screen layer to have a fluctuation in film thickness thereof. As a result of the fluctuation being provided in the film thickness of the current screen layer, parts of the current screen layer, smaller in the film thickness, will be selectively turned into metal areas low in resistance, and as the metal areas low in resistance serve as current paths, effects of confining current can be adjusted by controlling the fluctuation in the film thickness.
摘要:
A spin-valve type magnetic head which has sufficiently high output is provided. In one embodiment, a structure in which high output coexists with high stability is achieved by letting a GMR-effect and a current-path-confinement effect manifest themselves at the same time in a GMR-screen layer consisting of a ferromagnetic metal spike-like part and a half-covering oxide layer.
摘要:
Embodiments of the present invention provide a practical magneto-resistive effect element for CPP-GMR, which exhibits appropriate resistance-area-product and high magnetoresistance change ratio, and meets the demand for a narrow read gap. Certain embodiments of a magneto-resistive effect element in accordance with the present invention include a pinned ferromagnetic layer containing a first ferromagnetic film having a magnetization direction fixed in one direction, a free ferromagnetic layer containing a second ferromagnetic film having a magnetization direction varying in response to an external magnetic field, an intermediate layer provided between the pinned ferromagnetic layer and the free ferromagnetic layer, and a current confinement layer for confining a current. At least one of the pinned ferromagnetic layer or the free ferromagnetic layer includes a highly spin polarized layer.
摘要:
Embodiments of the present invention provides sufficiently high exchange coupling with a magnetic layer and improve the yield and reliability of a magnetoresistive head. By using a tilted growth crystalline structured antiferromagnetic film manufactured by an oblique incident deposition method, a high exchange coupling field with a ferromagnetic film can be obtained. As a result, excellent reliability and high output can be obtained in a magnetoresistive head utilizing features in accordance with embodiments of the present invention.
摘要:
Embodiments of the present invention provide a practical magneto-resistive effect element for CPP-GMR, which exhibits appropriate resistance-area-product and high magnetoresistance change ratio, and meets the demand for a narrow read gap. Certain embodiments of a magneto-resistive effect element in accordance with the present invention include a pinned ferromagnetic layer containing a first ferromagnetic film having a magnetization direction fixed in one direction, a free ferromagnetic layer containing a second ferromagnetic film having a magnetization direction varying in response to an external magnetic field, an intermediate layer provided between the pinned ferromagnetic layer and the free ferromagnetic layer, and a current confinement layer for confining a current. At least one of the pinned ferromagnetic layer or the free ferromagnetic layer includes a highly spin polarized layer.