摘要:
An amplifying circuit is formed by a combination of a dielectric line waveguide and a semiconductor device. Two electrically conductive plates are provided substantially parallel to each other. Two dielectric strips are disposed between the two conductive plates, and a dielectric plate is further inserted between the dielectric strips. Ground conductors are formed on the dielectric plate. The ground conductors have an area which equals an amount required for blocking a RF signal propagating in the dielectric line waveguide. A slot line is formed between the ground conductors in a position intermediate opposed sides of the dielectric strips. Line-switching conductor patterns are provided at both sides of the ends of the slot line. A field-effect transistor is mounted on the slot line such that it bridges over the slot line. Accordingly, losses and distortion of an RF signal, which would occur in an input/output circuit, are suppressed, and the generation of parasitic coupling is eliminated. Further, the dielectric line waveguide is miniaturized free from an external circuit, and accordingly, the manufacturing cost is reduced as well.
摘要:
A drain electrode and a source electrode are provided for an intrinsic device section on a GaAs substrate with a gate electrode placed therebetween. Almost all or substantial parts of the GaAs substrate is covered by an extending source electrode extending from the source electrode. A belt-shaped extending drain electrode is provided on the extending source electrode with a dielectric layer placed therebetween, and thereby an output-side microstripline is formed. A belt-shaped extending gate electrode is also provided on the extending source electrode with a dielectric layer placed therebetween, and thereby an input-side microstripline is formed.
摘要:
A planar dielectric integrated circuit is provided such that energy conversion loss between a planar dielectric line and electronic components is small and that impedance matching between them can be easily obtained. By providing slots which oppose both main surfaces of a circuit substrate, two planar dielectric lines are constructed. A slot line, and a first line-conversion conductor pattern which is connected to the electromagnetic field of the slot line and a first planar dielectric line in order to perform line conversion, are provided at the end portion of the first planar dielectric line, including a slot. A coplanar line and a second line-conversion conductor which is made to project in a direction at right angles to a second planar dielectric line is provided at the end portion of the second planar dielectric line, including a slot. A semiconductor device is placed in such a manner as to be extended over the coplanar line and the slot line.
摘要:
A dielectric resonator allowing size reduction and easy modulation of coupling between adjacent resonating sections and electrodes is provided. A configuration is such that electric conductors 2a and 2b having openings on two main faces of a dielectric substrate 2 are arranged so as to oppose each other. Electrodes 5 and 6 are respectively formed on one main face each of supporting members 3a and 3b, the supporting members 3a and 3b are arranged via spacers 9 so as to oppose each other and so as to be apart from each other with a predetermined spacing in the thickness direction of the dielectric substrate 2 for the dielectric substrate 2, first and second conductor plates 4a and 4b are arranged apart with a predetermined spacing from the supporting members 3a and 3b, and the dielectric substrate positioning between the openings opposing each other is used as a resonating section.
摘要:
An oscillator comprises a dielectric resonator, a circuit board, and an adjustment mechanism for adjusting the relative positional relationship between the dielectric resonator and the circuit board; the dielectric resonator having a dielectric substrate, electrodes provided on two opposite faces of the dielectric substrate, and electrode removal portions provided at predetermined positions on the electrodes; and the adjustment mechanism comprising screws and springs for moving the dielectric resonator.
摘要:
An electronic module, comprising: a dielectric base plate having first and second opposing surfaces on which respective electrodes are disposed such that respective areas at the first and second surfaces are free of electrode material and aligned relative to one another to form a dielectric resonator; a first electronic component coupled to the base plate; and a first circuit sheet having first and second opposing surfaces, at least one aperture between the surfaces, and a conductor pattern disposed on the first surface, the first circuit sheet being disposed on the base plate such that: (i) the first electronic component is at least partially received within the aperture; and (ii) at least part of the conductor pattern is coupled to the dielectric resonator.
摘要:
A planar dielectric integrated circuit is provided such that energy conversion loss between a planar dielectric line and electronic components is small and that impedance matching between them can be easily obtained. A planar dielectric line is provided by causing two slots to oppose each other with a dielectric plate interposed in between, a slot line and line-conversion conductor patterns are provided in the end portions of the planar dielectric line, and an FET is disposed in such a manner as to be extended over the slot line.
摘要:
A planar dielectric integrated circuit is provided such that energy conversion loss between a planar dielectric line and electronic components is small and that impedance matching between them can be easily obtained. A planar dielectric line is provided by causing two slots to oppose each other with a dielectric plate interposed in between, a slot line and line-conversion conductor patterns are provided in the end portions of the planar dielectric line, and an FET is disposed in such a manner as to be extended over the slot line.
摘要:
An electronic module, comprising: a dielectric base plate having first and second opposing surfaces on which respective electrodes are disposed such that respective areas at the first and second surfaces are free of electrode material and aligned relative to one another to form a dielectric resonator; a first electronic component coupled to the base plate; and a first circuit sheet having first and second opposing surfaces, at least one aperture between the surfaces, and a conductor pattern disposed on the first surface, the first circuit sheet being disposed on the base plate such that: (i) the first electronic component is at least partially received within the aperture; and (ii) at least part of the conductor pattern is coupled to the dielectric resonator.
摘要:
A small and inexpensive planar dielectric line that can be easily connected to electronic parts, such as ICs, and has smaller conduction losses. The planar dielectric line includes a dielectric substrate having first and second surfaces opposedly facing each other. A first slot having a predetermined width is interposed between first and second electrodes on the first surface of the dielectric substrate. A second slot having the same width as the first slot is disposed between third and fourth electrodes on the second surface of the dielectric substrate. The first and second slots opposedly face each other. The permittivity and the thickness of the dielectric substrate are determined so that a planar electromagnetic wave can propagate in a propagation region of the substrate interposed between the first and second slots while being substantially totally reflected on the first surface of the substrate adjacent to the first slot and the second surface of the substrate near the second slot. When the permittivity and the thickness of the dielectric substrate are determined to meet the following conditions, 80% or more of the total electric field energy is confined within a region which is small enough to substantially eliminate interference with an adjacent line:(relative permittivity of dielectric substrate).gtoreq.10 (thickness "t" of dielectric substrate).gtoreq.0.3 mm. When the relative permittivity is at least 18, 90% or more of the total electric field energy is confined.