摘要:
An example embodiment for a method of fabrication of a semiconductor device comprises the following. We provide a substrate with a first device region and a second device region. We provide a first type FET transistor in the first device region and provide a second type FET transistor in the second device region. We form an etch stop layer over the first and second device regions and forming a first stressor layer over the first device region. The first stressor layer puts a first type stress on the substrate in the first device region. We form a second stressor layer over the second device region. The second stressor layer puts a second type stress on the substrate in the second device region. Another example embodiment is the structure of a dual stress layer device having an etch stop layer.
摘要:
A structure and method of fabrication of a semiconductor device having a stress relief layer under a stress layer in one region of a substrate. In a first example, a stress relief layer is formed over a first region of the substrate (e.g., PFET region) and not over a second region (e.g., NFET region). A stress layer is over the stress relief layer in the first region and over the devices and substrate/silicide in the second region. The NFET transistor performance is enhanced due to the overall tensile stress in the NFET channel while the degradation in the PFET transistor performance is reduced/eliminated due to the inclusion of the stress relief layer. In a second example embodiment, the stress relief layer is formed over the second region, but not the first region and the stress of the stress layer is reversed.
摘要:
A structure and method of fabrication of a semiconductor device having a stress relief layer under a stress layer in one region of a substrate. In a first example, a stress relief layer is formed over a first region of the substrate (e.g., PFET region) and not over a second region (e.g., NFET region). A stress layer is over the stress relief layer in the first region and over the devices and substrate/silicide in the second region. The NFET transistor performance is enhanced due to the overall tensile stress in the NFET channel while the degradation in the PFET transistor performance is reduced/eliminated due to the inclusion of the stress relief layer. In a second example embodiment, the stress relief layer is formed over the second region, but not the first region and the stress of the stress layer is reversed.
摘要:
A structure and method of fabrication of a semiconductor device having a stress relief layer under a stress layer in one region of a substrate. In a first example, a stress relief layer is formed over a first region of the substrate (e.g., PFET region) and not over a second region (e.g., NFET region). A stress layer is over the stress relief layer in the first region and over the devices and substrate/silicide in the second region. The NFET transistor performance is enhanced due to the overall tensile stress in the NFET channel while the degradation in the PFET transistor performance is reduced/eliminated due to the inclusion of the stress relief layer. In a second example embodiment, the stress relief layer is formed over the second region, but not the first region and the stress of the stress layer is reversed.
摘要:
An epitaxial semiconductor layer may be formed in a first area reserved for p-type field effect transistors. An ion implantation mask layer is formed and patterned to provide an opening in the first area, while blocking at least a second area reserved for n-type field effect transistors. Fluorine is implanted into the opening to form an epitaxial fluorine-doped semiconductor layer and an underlying fluorine-doped semiconductor layer in the first area. A composite gate stack including a high-k gate dielectric layer and an adjustment oxide layer is formed in the first and second area. P-type and n-type field effect transistors (FET's) are formed in the first and second areas, respectively. The epitaxial fluorine-doped semiconductor layer and the underlying fluorine-doped semiconductor layer compensate for the reduction of the decrease in the threshold voltage in the p-FET by the adjustment oxide portion directly above.
摘要:
A method of forming an isolation trench structure is disclosed, the method includes forming an isolation trench in a semiconductor body associated with an isolation region, and implanting a non-dopant atom into the isolation trench, thereby forming a region to modify the halo profile in the semiconductor body. Subsequently, the isolation trench is filled with a dielectric material.
摘要:
A method and structure for a memory device, such as a 1T-SRAM, having a capacitor top plate directly over a doped bottom plate region. An example device comprises the following. An isolation film formed as to surround an active area on a substrate. A gate dielectric and gate electrode formed over a portion of the active area. A source element and a drain element in the substrate adjacent to the gate electrode. The drain element is comprised of a drain region and a bottom plate region. The drain region is between the bottom plate region and the gate structure. A capacitor dielectric and a capacitor top plate are over at least portions of the bottom plate region.
摘要:
A method forms a gate conductor over a substrate, forms spacers (e.g., nitride spacers) on sides of the gate conductor, and implants an impurity into exposed regions of the substrate not protected by the gate conductor and the spacers. Then the method forms a silicide on surfaces of the exposed regions of the substrate. The method forms a conformal protective layer (e.g., an oxide or other similar material) over the silicide, the spacers, and the gate conductor. Next, the method forms a non-conformal sacrificial layer (e.g., nitride or other material that can be selectively removed with respect to the protective layer) over the protective layer. A subsequent partial etching process partially etches the sacrificial layer such that relatively thinner regions of the sacrificial layer that are over the spacers are completely removed and the relatively thicker regions of the sacrificial layer that are over the substrate are not removed. The next step in the method removes only those portions of the protective layer that cover the spacers, without removing the portions of the protective layer that cover the silicide. As the spacers are now exposed and the silicide is protected by the protective and sacrificial layers, the method can safely remove the spacers without affecting the silicide.
摘要:
A first example embodiment provides a method of removing first spacers from gates and incorporating a low-k material into the ILD layer to increase device performance. A second example embodiment comprises replacing the first spacers after silicidation with low-k spacers. This serves to reduce the parasitic capacitances. Also, by implementing the low-k spacers only after silicidation, the embodiments' low-k spacers are not compromised by multiple high dose ion implantations and resist strip steps. The example embodiments can improve device performance, such as the performance of a rim oscillator.
摘要:
A method of forming a double-gated transistor comprising the following sequential steps. A substrate having an SOI structure formed thereover is provided. The SOI structure including a lower SOI oxide layer and an upper SOI silicon layer. The SOI silicon layer is patterned to form a patterned SOI silicon layer including a source region and a drain region connected by a channel portion. An encasing oxide layer is formed over the patterned SOI silicon layer to form an encased patterned SOI silicon layer. A patterned dummy layer is formed over the encased patterned SOI silicon layer. The patterned dummy layer having an opening, with exposed side walls, exposing: the channel portion of the encased patterned SOI silicon layer; and portions of the upper surface of the SOI oxide layer. Offset spacers are over the exposed side walls of the patterned dummy layer opening. The SOI oxide layer is etched while minimizing the undercut portions of the upper surface of the SOI oxide layer are undercut into the SOI oxide layer to form a minimal undercut. The minimizing undercutting process also removing the offset spacers and the encasing oxide layer over the channel portion of the patterned SOI silicon layer. A conformal oxide layer is formed around the channel portion of the patterned SOI silicon layer. A gate is formed within the patterned dummy layer opening. The gate including an upper gate above the patterned SOI silicon layer and a lower gate under the patterned SOI silicon layer. The patterned dummy layer is then removed to form the double-gated transistor.