摘要:
A method of fabricating a multilevel semiconductor integrated circuit is provided, comprising: forming on a first active semiconductor structure a first plurality of transistors with respective gate structures disposed on a first substrate and source or drain regions disposed within the first substrate; depositing a first insulation layer on the first substrate and the gate structures; etching the insulation layer to form a plurality of openings exposing portions of the first substrate contacting the bottoms of the openings; forming a semiconductor seed layer filling the openings; forming an amorphous layer on the seed layer and the insulation layer; subjecting the first active semiconductor structure to at least one application of laser irradiation to transform the amorphous layer to a crystalline semiconductor layer having a protrusion region with a peak at or near the middle of two adjacent openings; forming on a second active semiconductor structure a second plurality of transistors with respective gate structures disposed on the crystalline semiconductor layer and forming a contact structure to electrically connect a transistor of the first active semiconductor structure to a transistor of the second active semiconductor structure.
摘要:
A method of fabricating a semiconductor thin film is provided, comprising: forming an insulation layer on a semiconductor substrate; etching the insulation layer to form a plurality of openings exposing the substrate at the bottom of the openings; filling the openings with a semiconductor seed layer; forming an amorphous layer on the seed layer and the insulation layer; transforming the amorphous layer to a polycrystalline layer by exposing the amorphous layer to a first laser irradiation at a first energy level; and forming a single semiconductor crystalline film by annealing the polycrystalline layer and the semiconductor seed layer with a second laser irradiation at a second energy level.
摘要:
A method of fabricating a multilevel semiconductor integrated circuit is provided, comprising: forming on a first active semiconductor structure a first plurality of transistors with respective gate structures disposed on a first substrate and source or drain regions disposed within the first substrate; depositing a first insulation layer on the first substrate and the gate structures; etching the insulation layer to form a plurality of openings exposing portions of the first substrate contacting the bottoms of the openings; forming a semiconductor seed layer filling the openings; forming an amorphous layer on the seed layer and the insulation layer; subjecting the first active semiconductor structure to at least one application of laser irradiation to transform the amorphous layer to a crystalline semiconductor layer having a protrusion region with a peak at or near the middle of two adjacent openings; forming on a second active semiconductor structure a second plurality of transistors with respective gate structures disposed on the crystalline semiconductor layer and forming a contact structure to electrically connect a transistor of the first active semiconductor structure to a transistor of the second active semiconductor structure.
摘要:
A method of fabricating a semiconductor thin film is provided, comprising: forming an insulation layer on a semiconductor substrate; etching the insulation layer to form a plurality of openings exposing the substrate at the bottom of the openings; filling the openings with a semiconductor seed layer; forming an amorphous layer on the seed layer and the insulation layer; transforming the amorphous layer to a polycrystalline layer by exposing the amorphous layer to a first laser irradiation at a first energy level; and forming a single semiconductor crystalline film by annealing the polycrystalline layer and the semiconductor seed layer with a second laser irradiation at a second energy level.
摘要:
In some methods of fabricating a silicon-on-insulator substrate, a semiconductor substrate is provided that includes a single crystalline structure within at least a defined region thereof. A first insulating film is formed on the defined region of the semiconductor substrate with an opening that exposes a portion of the defined region of the semiconductor substrate having the single crystalline structure. A first non-single crystalline film is formed on the exposed portion of the semiconductor substrate and that at least substantially fills the opening in the first insulating film. A laser beam is generated that heats the first non-single crystalline film to change the first non-single crystalline film into a first single crystalline film having substantially the same single crystalline structure as the defined region of the semiconductor substrate.
摘要:
In some methods of fabricating a silicon-on-insulator substrate, a semiconductor substrate is provided that includes a single crystalline structure within at least a defined region thereof. A first insulating film is formed on the defined region of the semiconductor substrate with an opening that exposes a portion of the defined region of the semiconductor substrate having the single crystalline structure. A first non-single crystalline film is formed on the exposed portion of the semiconductor substrate and that at least substantially fills the opening in the first insulating film. A laser beam is generated that heats the first non-single crystalline film to change the first non-single crystalline film into a first single crystalline film having substantially the same single crystalline structure as the defined region of the semiconductor substrate.
摘要:
A semiconductor memory device includes a plurality of active pillars protruding from a semiconductor substrate, a first gate electrode disposed on at least one sidewall of the active pillar, a first gate insulating layer being disposed between the active pillar and the first gate electrode, a second gate electrode disposed on at least one sidewall of the active pillar over the first gate electrode, a second gate insulating layer being disposed between the active pillar and the second gate electrode, first and second body regions in the active pillar adjacent to respective first and second respective electrodes, and first through third source/drain regions in the active pillar arranged alternately with the first and second body regions.
摘要:
Provided are field effect transistors and methods of fabricating the same. The transistor may include a substrate with an active pattern, the active pattern having a top surface and two sidewalls, a gate electrode proximal to the top surface and the sidewalls of the active pattern and crossing the active pattern, a gate spacer covering a sidewall of the gate electrode, a gate dielectric pattern at a bottom surface of the gate electrode, a source electrode on the active pattern at one side of the gate electrode, a drain electrode on the active pattern at another side of the gate electrode, and silicide patterns on surfaces of the source and drain electrodes, respectively. The gate dielectric pattern includes at least one high-k layer and the gate spacer has a dielectric constant that is smaller than that of the gate dielectric pattern.
摘要:
Provided are a semiconductor memory device and a method of manufacturing the same. The semiconductor memory device may include a plurality of active pillars projecting from a semiconductor substrate, a gate pattern disposed on at least a portion of each of the active pillars with a gate insulator interposed therebetween, and a conductive line disposed on each of the active pillars and below the corresponding gate pattern, the conductive line may be insulated from the semiconductor substrate and the gate pattern, wherein each of the active pillars may include a drain region above the corresponding gate pattern, a body region adjacent to the corresponding gate pattern, and a source region that is in contact with the conductive line below the gate pattern.
摘要:
Nonvolatile memory devices and methods of manufacturing nonvolatile memory devices are provided. The method includes patterning a bulk substrate to form an active pillar; forming a charge storage layer on a side surface of active pillar; and forming a plurality of gates connected to the active pillar, the charge storage layer being disposed between the active pillar and the gates. Before depositing a gate, a bulk substrate is etched using a dry etching to form a vertical active pillar which is in a single body with a semiconductor substrate.