摘要:
The present invention provides a thin-film transistor offering a higher electron (or hole) mobility, a method for manufacturing the thin-film transistor, and a display using the thin-film transistor. The present invention provides a thin-film transistor having a source region, a channel region, and a drain region in a semiconductor thin film with a crystal grown in a horizontal direction, the thin-film transistor having a gate insulating film and a gate electrode over the channel region, wherein a drain edge of the drain region which is adjacent to the channel region is formed in the vicinity of a crystal growth end position.
摘要:
The present invention provides a thin-film transistor having a higher mobility for electrons or holes, a method for manufacturing the thin-film transistor, and a display using the thin-film transistor. Thus, the present invention provides a thin-film transistor having a source region, a channel region, and a drain region in a semiconductor thin film having a crystallization region with a crystal grown in a horizontal direction, the thin-film transistor having a gate insulating film and a gate electrode over the channel region, wherein a drain edge of the drain region which is adjacent to the channel region is formed in the vicinity of a crystal growth end position.
摘要:
The present invention provides a thin-film transistor offering a higher electron (or hole) mobility, a method for manufacturing the thin-film transistor, and a display using the thin-film transistor. The present invention provides a thin-film transistor having a source region, a channel region, and a drain region in a semiconductor thin film with a crystal grown in a horizontal direction, the thin-film transistor having a gate insulating film and a gate electrode over the channel region, wherein a drain edge of the drain region which is adjacent to the channel region is formed in the vicinity of a crystal growth end position.
摘要:
There is disclosed a thin film transistor having a source region, a channel region, and a drain region in a semiconductor thin film whose crystals have grown in a transverse direction, the thin film transistor having a gate insulating film and a gate electrode in an upper part of the channel region, wherein a channel-region-side edge portion of the drain region or the source region is disposed in such a manner as to be positioned in the vicinity of an end position of lateral growth.
摘要:
There is provided a thin-film transistor that is formed on an insulating substrate, is capable of a high-speed operation, has small non-uniformity among devices, is hardly susceptible to device destruction due to high voltage, and is free from the effect of a parasitic transistor that forms at an edge part of an Si island. The thin-film semiconductor device is formed using a thin-film semiconductor provided on the insulating substrate and includes a gate region for formation of a channel region through which a drain current flows. The gate region has a ring shape in plan on the insulating substrate. High concentration impurity-doped regions are dividedly provided on an inside and an outside of the ring-shaped gate region, and the channel region is formed of a plurality of fan-shaped semiconductor single-crystal portions.
摘要:
There is provided a thin-film transistor that is formed on an insulating substrate, is capable of a high-speed operation, has small non-uniformity among devices, is hardly susceptible to device destruction due to high voltage, and is free from the effect of a parasitic transistor that forms at an edge part of an Si island. The thin-film semiconductor device is formed using a thin-film semiconductor provided on the insulating substrate and includes a gate region for formation of a channel region through which a drain current flows. The gate region has a ring shape in plan on the insulating substrate. High concentration impurity-doped regions are dividedly provided on an inside and an outside of the ring-shaped gate region, and the channel region is formed of a plurality of fan-shaped semiconductor single-crystal portions.
摘要:
There is provided a thin-film transistor that is formed on an insulating substrate, is capable of a high-speed operation, has small non-uniformity among devices, is hardly susceptible to device destruction due to high voltage, and is free from the effect of a parasitic transistor that forms at an edge part of an Si island. The thin-film semiconductor device is formed using a thin-film semiconductor provided on the insulating substrate and includes a gate region for formation of a channel region through which a drain current flows. The gate region has a ring shape in plan on the insulating substrate. High concentration impurity-doped regions are dividedly provided on an inside and an outside of the ring-shaped gate region, and the channel region is formed of a plurality of fan-shaped semiconductor single-crystal portions.
摘要:
An object of the present invention is to provide a thin film transistor having a high mobility and having fewer fluctuations in the mobility or threshold voltage characteristics. A non-single-crystal semiconductor thin film having a thickness of less than 50 nm and disposed on an insulating substrate is irradiated with laser light having an inverse-peak-patterned light intensity distribution to grow crystals unidirectionally in a lateral direction. Thus, band-like crystal grains having a dimension in a crystal growth direction, which is longer than a width, are arranged adjacent to each other in a width direction to form a crystal grain array. A source region and a drain region of a TFT are formed so that a current flows in the crystal growth direction in an area including a plurality of crystal grains of this crystal grain array.
摘要:
An object of the present invention is to provide a thin film transistor having a high mobility and having fewer fluctuations in the mobility or threshold voltage characteristics. A non-single-crystal semiconductor thin film having a thickness of less than 50 nm and disposed on an insulating substrate is irradiated with laser light having an inverse-peak-patterned light intensity distribution to grow crystals unidirectionally in a lateral direction. Thus, band-like crystal grains having a dimension in a crystal growth direction, which is longer than a width, are arranged adjacent to each other in a width direction to form a crystal grain array. A source region and a drain region of a TFT are formed so that a current flows in the crystal growth direction in an area including a plurality of crystal grains of this crystal grain array.
摘要:
An input-output (I/O) protective circuit having more stable I/O protective function for use in the liquid crystal display device and including in one embodiment a resistance provided between an I/O terminal pad and an I/O primary stage thin film transistor, a wiring connecting the I/O terminal pad with the resistance, and two I/O protective thin film transistors connected in series between a ground terminal and a power source terminal. The above wiring is connected with each joint portion of the two I/O protective thin film transistors and, each of the two I/O protective thin film transistors has p-type substrate potential fixing terminals and n-type substrate potential fixing terminals, which are connected with each of the channel layers of the I/O protective thin film transistors, and p-type substrate potential fixing terminals and n-type substrate potential fixing terminals are connected with the ground terminals.