摘要:
To provide a semiconductor memory device having an improved write efficiency because deterioration of a gate insulating film is suppressed.An element formation region is formed in a region of a semiconductor substrate sandwiched between element isolation regions. In the element isolation regions, a silicon oxide film is filled in a trench having a predetermined depth. An erase gate electrode is formed in the element isolation region while being buried in the silicon oxide film. Over the element formation region, floating gate electrodes are formed via a gate oxide film and control gate electrodes are formed over the floating gate electrodes via an ONO film. Two adjacent floating gate electrodes have therebetween an insulating film formed to cover the erase gate electrode.
摘要:
Provided are a thin-film transistor formed by connecting polysilicon layers having different conductivity types with each other which prevents occurrence of inconvenience resulting from diffusion of impurities and a method of fabricating the same. A drain (6), a channel (7) and a source (8) are integrally formed on a surface of a second oxide film (4) by polysilicon. The drain (6) is formed to be connected with a pad layer (3) (second polycrystalline semiconductor layer) through a contact hole (5) which is formed to reach an upper surface of the pad layer (3). The pad layer (3) positioned on a bottom portion of the contact hole (5) (opening) is provided with a boron implantation region BR.
摘要:
Provided are a thin-film transistor formed by connecting polysilicon layers having different conductivity types with each other which prevents occurrence of inconvenience resulting from diffusion of impurities and a method of fabricating the same. A drain (6), a channel (7) and a source (8) are integrally formed on a surface of a second oxide film (4) by polysilicon. The drain (6) is formed to be connected with a pad layer (3) (second polycrystalline semiconductor layer) through a contact hole (5) which is formed to reach an upper surface of the pad layer (3). The pad layer (3) positioned on a bottom portion of the contact hole (5) (opening) is provided with a boron implantation region BR.
摘要:
According to a semiconductor device and a method of manufacturing the same, a storage node has an increased capacity, and a resistance against soft error is improved. A GND interconnection is formed on a first interconnection layer including storage node portions with a dielectric film therebetween. Thereby, the storage node portions, the dielectric film, and the GND interconnection form a capacity element of the storage node portion. The first interconnection layer is arranged symmetrically around the center of the memory cell, and a plurality of memory cells having the same layout and neighboring to each other are arranged along the word lines.
摘要:
The present invention provides an improved static random access memory which can be manufactured into values as designed by photolithography. Second direct contract for connecting active region and ground line for first and second memory cells is provided at a boundary between the first memory cell and second memory cell. Second direct contact is divided into a plurality of portions.
摘要:
An n.sup.- epitaxial layer 4 is formed on the top face of a p type semiconductor substrate 1. A p.sup.+ buried layer 20 is formed by implanting ions in the region extending over the p type semiconductor substrate 1 and the n.sup.- epitaxial layer 4. A p.sup.+ channel stop is formed in the upper layer of the p.sup.+ buried layer 20 by ion implantation. A p well is formed extending from the upper layer of the p.sup.+ channel stop to the top face of the n.sup.- epitaxial layer. An n channel MOS type field effect transistor 200 is formed in the p well 22. It is possible to reliably isolate an element from an adjacent element thereto because of the structure.
摘要:
The impurity concentration of an n.sup.+ buried layer 51a in the region for forming a p channel MOS transistor 23 is higher than the impurity concentration of an n.sup.+ buried layer 3a in the region for forming an npn bipolar transistor 21. N.sup.+ buried layers 3a and 51a are formed on a p type silicon substrate 1. An n.sup.- well region 10 is formed as a region for forming npn bipolar transistor 21 on n.sup.+ buried layer 3a. An n well region 12 is formed as a region for forming p channel MOS transistor 23 on n.sup.+ buried layer 51a. While the performance of npn bipolar transistor 21 is maintained, the performance of a CMOS transistor formed of an n channel MOS transistor 22 and p channel MOS transistor 23 is improved. In a Bi-CMOS semiconductor device, the performance of a bipolar transistor portion is maintained, while preventing the formation of a punch through and improving the latch up tolerance of a CMOS transistor portion.
摘要:
A semiconductor device includes an interlayer insulation film including an air gap between portions of adjacent wiring layers or isolation pattern layers or both that are distanced from each other by thinning a layered structure of each of the wiring layers or the isolation pattern layers or both selectively from a top layer to a substrate so that the portions of the wiring layers or the isolation pattern layers or both are distanced from each other.
摘要:
To improve reliability of FETs having element isolation regions for electrically isolating field effect transistors adjacent to each other in the gate length direction in a mask ROM region, the isolation regions are each constructed by field plate isolation formed simultaneously with gate electrodes of the field effect transistors. This relatively lessens a stress generated in an active region ACT sandwiched by the element isolation regions even if the isolation width of each element isolation region is made relatively small, specifically, less than 0.3 μm. It is therefore possible to relax or prevent the generation of crystal defects resulting from the stress, thereby reducing occurrence of an undesired leak current between the source and drain of each field effect transistor.
摘要:
Provided are a thin-film transistor formed by connecting polysilicon layers having different conductivity types with each other which prevents occurrence of inconvenience resulting from diffusion of impurities and a method of fabricating the same. A drain (6), a channel (7) and a source (8) are integrally formed on a surface of a second oxide film (4) by polysilicon. The drain (6) is formed to be connected with a pad layer (3) (second polycrystalline semiconductor layer) through a contact hole (5) which is formed to reach an upper surface of the pad layer (3). The pad layer (3) positioned on a bottom portion of the contact hole (5) (opening) is provided with a boron implantation region BR.