摘要:
A method of dividing, along lattice pattern-like dividing lines, a wafer which has the lattice pattern-like dividing lines and a polymer film on the front surface of a substrate and is processed to allow for division along the dividing lines, the method comprising a frame holding step for putting the wafer on the surface of an adhesive tape mounted on an annular frame; a wafer cooling step for cooling the wafer that is affixed to the surface of the adhesive tape mounted on the annular frame; and a diving step for dividing the wafer along the dividing lines by expanding the adhesive tape to which the cooled wafer is affixed.
摘要:
A method of dividing, along lattice pattern-like dividing lines, a wafer which has the lattice pattern-like dividing lines and a polymer film on the front surface of a substrate and is processed to allow for division along the dividing lines, the method comprising a frame holding step for putting the wafer on the surface of an adhesive tape mounted on an annular frame; a wafer cooling step for cooling the wafer that is affixed to the surface of the adhesive tape mounted on the annular frame; and a diving step for dividing the wafer along the dividing lines by expanding the adhesive tape to which the cooled wafer is affixed.
摘要:
A wafer grinding method for grinding the surface to be ground of a wafer having an arcuatedly chamfered outer peripheral surface, comprising an outer peripheral portion removal step for removing the outer peripheral portion of the wafer by applying a laser beam from one surface side of the wafer along the outer periphery at a location on the inside of the outer periphery by a predetermined distance; and a grinding step for grinding the surface to be ground of the wafer whose outer peripheral portion has been removed, to a predetermined finish thickness.
摘要:
A wafer dividing method for dividing a wafer having a film on the front side thereof. The wafer dividing method includes a modified layer forming step of applying a laser beam having a transmission wavelength to the substrate of the wafer from the front side thereof along the streets so that a focal point of the laser beam is set inside the substrate, thereby forming a modified layer in the substrate along each street, a film dividing step of applying a laser beam having an absorption wavelength to the film from the front side of the wafer along each street to thereby form a laser processed groove for dividing the film along each street, a back grinding step of grinding the back side of the substrate of the wafer to thereby reduce the thickness of the wafer to a predetermined thickness, a wafer supporting step of attaching the wafer to a dicing tape supported to an annular frame, and a wafer breaking step of applying an external force to the wafer by expanding the dicing tape to thereby break the wafer along each street.
摘要:
A wafer dividing method for dividing a wafer having a film on the front side thereof. The wafer dividing method includes a modified layer forming step of applying a laser beam having a transmission wavelength to the substrate of the wafer from the front side thereof along the streets so that a focal point of the laser beam is set inside the substrate, thereby forming a modified layer in the substrate along each street, a film dividing step of applying a laser beam having an absorption wavelength to the film from the front side of the wafer along each street to thereby form a laser processed groove for dividing the film along each street, a back grinding step of grinding the back side of the substrate of the wafer to thereby reduce the thickness of the wafer to a predetermined thickness, a wafer supporting step of attaching the wafer to a dicing tape supported to an annular frame, and a wafer breaking step of applying an external force to the wafer by expanding the dicing tape to thereby break the wafer along each street.
摘要:
A dividing method for a workpiece having a substrate with a film formed on the front side thereof. A first laser beam is applied to the film from the front side of the workpiece along the streets formed on the film, thereby forming a plurality of laser processed grooves along the streets to cut the film along the streets. Thereafter, an adhesive tape is attached to the front side of the workpiece. Thereafter, a second laser beam is applied to the substrate from the back side of the workpiece along the streets in the condition where the focal point of the second laser beam is set inside the substrate, thereby forming a plurality of modified layers inside the substrate along the streets. Thereafter, the adhesive tape is expanded to thereby divide the substrate along the streets, thereby obtaining a plurality of individual devices. Thereafter, the back side of the substrate of each device is ground to remove the modified layers and reduce the thickness of each device to a predetermined thickness.
摘要:
A laser beam machining apparatus includes laser beam irradiation unit for irradiating a wafer held on a chuck table with a laser beam, and control unit. The laser beam irradiation unit includes a laser beam oscillator for oscillating a laser beam with such a wavelength as to be transmitted through said wafer, repetition frequency setting section for setting a repetition frequency of pulses in the laser beam oscillated from the laser beam oscillator. The control unit includes a memory for storing coordinates of an arcuate chamfer part formed at the outer periphery of the wafer and coordinates of a flat surface part surrounded by the chamfer part, and controls the repetition frequency setting section so as to set the repetition frequency of the pulses in the laser beam with which to irradiate the flat surface part to a value suitable for machining of the wafer and as to set the repetition frequency of the pulses in the laser beam with which to irradiate the chamfer part to a value higher than the repetition frequency in the pulses of the laser beam with which to irradiate the flat surface part.
摘要:
A wireless communication system includes wireless terminals. Each of the wireless terminals includes an SDM transmitting unit that includes antennas and generates directional radio signals to be transmitted to other terminals, each of which is obtained by superimposing radio signals at the antennas, each of which is composed of modulated data for each of the other terminals; a single-system receiving unit; and a TDMA control unit that controls a transmission of the SDM transmitting unit and a reception of the receiving unit in a time division manner. Using a TDMA scheme, the wireless terminals are controlled such that one of the wireless terminals acquires a transmission right for a predetermined time period to simultaneously transmit the generated directional radio signals from the SDM transmitting unit, while during the predetermined time period, the receiving units of the other wireless terminals having no transmission right simultaneously receive their corresponding directional radio signals.
摘要:
A method of dividing a workpiece includes: forming a pre-machining alteration region in the inside of a region in which no device is formed; detecting the position of the pre-machining alteration region through infrared imaging by imaging means, to thereby recognize a deviation between the pre-machining alteration region and a planned dividing line as machining position correction information; and forming a main machining alteration region by utilizing the machining position correction information, whereby the workpiece can be accurately divided along the planned dividing lines into individual devices.
摘要:
A dividing method for a platelike workpiece having a two-layer structure such that a solder layer (metal layer) is formed on the back side of a wafer (substrate). First, a modified layer is formed in the wafer along each division line formed on the front side of the wafer. Thereafter, the workpiece is bent along each division line to thereby divide the wafer along each division line from the corresponding modified layer as a starting point and simultaneously form a weak portion in the solder layer along each division line. Thereafter, an expandion tape attached to the solder layer is expanded to apply an external force to the solder layer, thereby dividing the solder layer along each division line from the corresponding weak portion as a starting point. Thus, the workpiece is completely divided.