摘要:
The semiconductor device fabrication method comprises the step of forming gate electrode 20 on a semiconductor substrate 10 with a gate insulation film 18 formed therebetween; the step of implanting dopants in the semiconductor substrate 10 with the gate electrode 20 as the mask to form dopant diffused regions 28, 36; the step of forming a silicon oxide film 38 on the semiconductor substrate 10, covering the gate electrodes 20; anisotropically etching the silicon oxide film 38 to form sidewall spacers 42 including the silicon oxide film 38 on the side walls of the gate electrode 20. In the step of forming a silicon oxide film 38, the silicon oxide film 38 is formed by thermal CVD at a 500-580° C. film forming temperature, using bis (tertiary-butylamino) silane and oxygen as raw materials. Silicon oxide film 38 is formed at a relatively low film forming temperature, whereby the diffusion of the dopant in the dopant diffused regions 28, 36 forming the shallow region of the extension source/drain structure can be suppressed.
摘要:
Compression stress applying portions 20 of SiGe film are formed in the source/drain regions of the p-MOSA region 30a. Then, impurities are implanted in the p-MOS region 30a and the n-MOS region 30b to form shallow junction regions 22a, 22b and deep junction regions 23a, 23b. The impurity in the shallow junction regions 22a, 22b is prevented from being diffused immediately below the gate insulation film 15 by the thermal processing in forming the SiGe film, the short channel effect is prevented, and the hole mobility of the channel region of the p-MOS transistor 14a. The operation speed of the p-MOS transistor 13a is balanced with that of the n-MOS transistor, whereby the operation speed of the complementary semiconductor device 10 can be increased. The semiconductor device fabricating method can increase and balance the operation speed of a p-transistor with that of an n-transistor.
摘要:
Compression stress applying portions 20 of SiGe film are formed in the source/drain regions of the p-MOSA region 30a. Then, impurities are implanted in the p-MOS region 30a and the n-MOS region 30b to form shallow junction regions 22a, 22b and deep junction regions 23a, 23b. The impurity in the shallow junction regions 22a, 22b is prevented from being diffused immediately below the gate insulation film 15 by the thermal processing in forming the SiGe film, the short channel effect is prevented, and the hole mobility of the channel region of the p-MOS transistor 14a. The operation speed of the p-MOS transistor 13a is balanced with that of the n-MOS transistor, whereby the operation speed of the complementary semiconductor device 10 can be increased. The semiconductor device fabricating method can increase and balance the operation speed of a p-transistor with that of an n-transistor.
摘要:
The semiconductor device fabrication method comprises the step of forming gate electrode 20 on a semiconductor substrate 10 with a gate insulation film 18 formed therebetween; the step of implanting dopants in the semiconductor substrate 10 with the gate electrode 20 as the mask to form dopant diffused regions 28, 36; the step of forming a silicon oxide film 38 on the semiconductor substrate 10, covering the gate electrodes 20; anisotropically etching the silicon oxide film 38 to form sidewall spacers 42 including the silicon oxide film 38 on the side walls of the gate electrode 20. In the step of forming a silicon oxide film 38, the silicon oxide film 38 is formed by thermal CVD at a 500–580° C. film forming temperature, using bis(tertiary-butylamino)silane and oxygen as raw materials. Silicon oxide film 38 is formed at a relatively low film forming temperature, whereby the diffusion of the dopant in the doapnt diffused regions 28, 36 forming the shallow region of the extension source/drain structure can be suppressed.
摘要:
A hull construction of a cargo carrier vessel, with self-propelling capacity, capable of carrying earth, sand, quarried stones and so forth and of disposing of them from the bottom is disclosed. While the bottom (11) is released, the hold forms a double-hull construction with side walls (12). A pair of right and left doors, each with an L-shaped section, is provided. The upper part of each door is connected by hinges to outsides of the side walls of said hold. The doors curve and extend along the released bottom. Cargo is carried in the hold (1). Furthermore, a door structure to dispose of cargo from the released bottom into the sea by releasing it to the right and left and equipment to open and close the pair of doors, located at the front and back of the door structure, is provided.
摘要:
An image display system has an operating device, a specifying device and an image display device. If the operating device receives a single operation from an exterior (i.e., from user), the operating device outputs first and second signals based on the single operation. The specifying device specifies a viewpoint and a sight line direction to look down a picture based on the first and second signals outputted by the operating device. The image display device displays an image of the picture in such a manner that the picture is looked down from the viewpoint in the sight line direction specified by the specifying device. As a result, the operation for adjusting the viewpoint and the sight line direction is facilitated.
摘要:
An organic electroluminescent display apparatus having organic electroluminescent devices each of which is excellent in color reproducibility and has high emission efficiency in which green organic electroluminescent devices each have a delayed fluorescent material and a microcavity, and the hole transport layer of each of the devices has the same thickness as that of the hole transport layer of each of blue organic electroluminescent devices.
摘要:
There is provided a semiconductor device having a device isolation region of STI structure formed on a silicon substrate so as to define a device region, wherein the device isolation region comprises a device isolation trench formed in the silicon substrate, and a device isolation insulation film filling the device isolation trench. At least a surface part of the device isolation insulation film is formed of an HF-resistant film.
摘要:
The effects of knock-on oxide in a semiconductor substrate are reduced by providing a semiconductor substrate and forming a thin layer of native oxide on the semiconductor substrate. Ion implantation is performed through the native oxide layer. The native oxide layer reduces the phenomenon of knock-on oxide and oxygen concentration within the semiconductor substrate. Further reduction may be achieved by etching the surface of the semiconductor substrate in order to eliminate a concentration of oxygen at a surface of the semiconductor substrate.
摘要:
A multilayer film according to the present invention is a multilayer film, in which an outermost layer and an innermost layer are laminated via an intermediate layer arranged from one to three layers, with the intermediate layer including at least one layer being made of 0 to 55 weight % of a linear polyethylene having a density of 0.910 to 0.930 g/cm3, 5 to 15 weight % of a high-density polyethylene having a density of 0.950 to 0.970 g/cm3, and 35 to 85 weight % of a linear polyethylene having a density of 0.900 to 0.910 g/cm3 and polymerized using a single-site catalyst, and having a density lower than the outermost layer and the innermost layer, and each of the outermost layer and the innermost layer being formed of a polyethylene or a mixture of two or more types of polyethylene.
摘要翻译:根据本发明的多层膜是通过经过1至3层布置的中间层层压最外层和最内层的多层膜,中间层至少包含一层为0至55层 密度为0.910〜0.930g / cm 3的线性聚乙烯的重量%,密度为0.950〜0.970g / cm 3的高密度聚乙烯为5〜15重量%,以及35〜85重量%的具有 密度为0.900〜0.910g / cm 3,使用单中心催化剂进行聚合,密度低于最外层和最内层,最外层和最内层由聚乙烯或混合物形成 的两种或更多种类型的聚乙烯。