摘要:
A silicon-on-insulator (SOD integrated circuit and a method of fabricating the SOI integrated circuit are provided. At least one isolated transistor active region and a body line are formed on an SOI substrate. The transistor active region and the body line are surrounded by an isolation layer which is in contact with a buried insulating layer of the SOI substrate. A portion of the sidewall of the transistor active region is extended to the body line. Thus, the transistor active region is electrically connected to the body line through a body extension. The body extension is covered with a body insulating layer. An insulated gate pattern is formed over the transistor active region, and one end of the gate pattern is overlapped with the body insulating layer.
摘要:
The present invention relates to an SOI semiconductor device and a method for fabricating an SOI semiconductor device, in which the portions formed with silicide layers are laterally restricted by spacers to a predetermined range in the diffusion regions to be used for diodes or well resistors. In this manner, it is possible to fix the length of distance between the sides of a silicide layer and a diffusion region, greater than that available in the prior art techniques, thereby minimizing power leakage at the sides of the diffusion regions. In the SOI semiconductor device thus constructed, the diffusion regions to be used for diodes (or well resistors) are constructed with spacers in a double junction structure of different density of impurity layers (for instance, a P− or N− layer respectively surrounds a P+ or N+ layer), in other words, only onto a high density of impurity layer, the P+ or N+ layer, or in a single junction structure in which the spacers restrict a range of space for forming the silicide layer in the diffusion region.
摘要翻译:SOI半导体器件及SOI半导体器件的制造方法本发明涉及一种SOI半导体器件的制造方法,其中由硅化物层形成的部分在隔离层中被横向限制在用于二极管或阱电阻器的扩散区域中的预定范围内。 以这种方式,可以固定硅化物层和扩散区域的侧面之间的距离长度,大于现有技术中可用的距离,从而最小化扩散区域侧面的功率泄漏。 在如此构造的SOI半导体器件中,用于二极管(或阱电阻器)的扩散区域由具有不同密度杂质层的双结结构中的间隔物构成(例如,P-或N-层分别围绕 P +或N +层),换句话说,仅在高密度的杂质层,P +或N +层上,或在单结结构中,其中间隔物限制在扩散区域中形成硅化物层的空间范围。
摘要:
A silicon-on-insulator (SOI) integrated circuit and a method of fabricating the SOI integrated circuit are provided. At least one isolated transistor active region and a body line are formed on an SOI substrate. The transistor active region and the body line are surrounded by an isolation layer which is in contact with a buried insulating layer of the SOI substrate. A portion of the sidewall of the transistor active region is extended to the body line. Thus, the transistor active region is electrically connected to the body line through a body extension. The body extension is covered with a body insulating layer. An insulated gate pattern is formed over the transistor active region, and one end of the gate pattern is overlapped with the body insulating layer.
摘要:
A silicon-on-insulator (SOI) integrated circuit and a method of fabricating the SOI integrated circuit are provided. At least one isolated transistor active region and a body line are formed on an SOI substrate. The transistor active region and the body line are surrounded by an isolation layer which is in contact with a buried insulating layer of the SOI substrate. A portion of the sidewall of the transistor active region is extended to the body line. Thus, the transistor active region is electrically connected to the body line through a body extension. The body extension is covered with a body insulating layer. An insulated gate pattern is formed over the transistor active region, and one end of the gate pattern is overlapped with the body insulating layer.
摘要:
A silicon-on-insulator (SOI) integrated circuit and a method of fabricating the SOI integrated circuit are provided. At least one isolated transistor active region and a body line are formed on an SOI substrate. The transistor active region and the body line are surrounded by an isolation layer which is in contact with a buried insulating layer of the SOI substrate. A portion of the sidewall of the transistor active region is extended to the body line. Thus, the transistor active region is electrically connected to the body line through a body extension. The body extension is covered with a body insulating layer. An insulated gate pattern is formed over the transistor active region, and one end of the gate pattern is overlapped with the body insulating layer.
摘要:
The present invention relates to an SOI semiconductor device and a method for fabricating an SOI semiconductor device, in which the portions formed with silicide layers are laterally restricted by spacers to a predetermined range in the diffusion regions to be used for diodes or well resistors. In this manner, it is possible to fix the length of distance between the sides of a silicide layer and a diffusion region, greater than that available in the prior art techniques, thereby minimizing power leakage at the sides of the diffusion regions. In the SOI semiconductor device thus constructed, the diffusion regions to be used for diodes (or well resistors) are constructed with spacers in a double junction structure of different density of impurity layers (for instance, a P− or N− layer respectively surrounds a P+ or N+ layer), in other words, only onto a high density of impurity layer, the P+ or N+ layer, or in a single junction structure in which the spacers restrict a range of space for forming the silicide layer in the diffusion region.
摘要:
The present invention relates to a highly integrated SOI semiconductor device and a method for fabricating the SOI semiconductor device by reducing a distance between diodes or well resistors without any reduction in insulating characteristics. The device includes a first conductivity type semiconductor substrate and a surface silicon layer formed by inserting an insulating layer on the semiconductor substrate. A trench is formed by etching a predetermined portion of surface silicon layer, insulating layer and substrate to expose a part of the semiconductor substrate to be used for an element separating region, and a STI is formed in the trench. A transistor is constructed on the surface silicon layer surrounded by the insulating layer and STI with a gate electrode being positioned at the center thereof and with source/drain region being formed in the surface silicon layer of both edges of the gate electrode for enabling its bottom part to be in contact with the insulating layer. A first groove is formed between the STI at one side of the transistor by etching the surface silicon layer and insulating layer to expose a predetermined portion of an active region of a second conductivity type well in the semiconductor substrate. A second groove is formed between the STI at one side of the first groove by etching the surface silicon layer and insulating layer to expose a predetermined portion of the active region of the semiconductor substrate. A first diode diffusion region of a first conductivity type is formed in a second conductivity type well under the first groove, and a second diode diffusion region of a second conductivity type is formed in the semiconductor substrate under the second groove.
摘要:
The present invention relates to a highly integrated SOI semiconductor device and a method for fabricating the SOI semiconductor device by reducing a distance between diodes or well resistors without any reduction in insulating characteristics. The device includes a first conductivity type semiconductor substrate and a surface silicon layer formed by inserting an insulating layer on the semiconductor substrate. A trench is formed by etching a predetermined portion of surface silicon layer, insulating layer and substrate to expose a part of the semiconductor substrate to be used for an element separating region, and a STI is formed in the trench. A transistor is constructed on the surface silicon layer surrounded by the insulating layer and STI with a gate electrode being positioned at the center thereof and with source/drain region being formed in the surface silicon layer of both edges of the gate electrode for enabling its bottom part to be in contact with the insulating layer. A first groove is formed between the STI at one side of the transistor by etching the surface silicon layer and insulating layer to expose a predetermined portion of an active region of a second conductivity type well in the semiconductor substrate. A second groove is formed between the STI at one side of the first groove by etching the surface silicon layer and insulating layer to expose a predetermined portion of the active region of the semiconductor substrate. A first diode diffusion region of a first conductivity type is formed in a second conductivity type well under the first groove, and a second diode diffusion region of a second conductivity type is formed in the semiconductor substrate under the second groove.
摘要:
Provided are an apparatus and method for controlling program conversion according to program protection information. The method for controlling conversion of a broadcasting program includes: demultiplexing a broadcasting program into broadcasting program data and program protection information; encrypting the broadcasting program data based on distribution condition of the program protection information when recordation of the broadcasting program data is requested; and recording the encrypted broadcasting program data.
摘要:
A cell structure of a non-volatile memory device, which uses a nitride layer as a floating gate spacer, includes a gate stack and a floating gate transistor formed over a semiconductor substrate. The gate stack includes a first portion of a floating gate, a control gate formed over the first portion of the floating gate, and a non-nitride spacer adjacent to sidewalls of the first portion of floating gate. The floating gate transistor includes a second portion of the floating gate, which substantially overlaps a source and/or drain formed in the substrate. The application of ultraviolet rays to the non-nitride spacer of a programmed cell can causes the second portion of the floating gate to discharge, thereby easily erasing the programmed cell.