摘要:
Provided are nonvolatile memory devices with a three-dimensional structure and methods of fabricating the same. The nonvolatile memory device includes conductive patterns three-dimensionally arranged on a semiconductor substrate, semiconductor patterns that extend from the semiconductor substrate and intersect one-side walls of the conductive patterns, charge storage layers interposed between the semiconductor patterns and one-side walls of the conductive patterns, and seed layer patterns interposed between the charge storage layers and one-side walls of the conductive patterns.
摘要:
Provided are nonvolatile memory devices with a three-dimensional structure and methods of fabricating the same. The nonvolatile memory device includes conductive patterns three-dimensionally arranged on a semiconductor substrate, semiconductor patterns that extend from the semiconductor substrate and intersect one-side walls of the conductive patterns, charge storage layers interposed between the semiconductor patterns and one-side walls of the conductive patterns, and seed layer patterns interposed between the charge storage layers and one-side walls of the conductive patterns.
摘要:
A method of fabricating a nonvolatile memory device with a three-dimensional structure includes alternately stacking first and second material layers in two or more layers on a semiconductor substrate, forming trenches penetrating the stacked first and second material layers by performing a first etching process, and removing the second material layers exposed in the trenches by performing a second etching process. The first and second material layers are formed of materials that have the same main component but have different impurity contents, respectively.
摘要:
A method of fabricating a nonvolatile memory device with a three-dimensional structure includes alternately stacking first and second material layers in two or more layers on a semiconductor substrate, forming trenches penetrating the stacked first and second material layers by performing a first etching process, and removing the second material layers exposed in the trenches by performing a second etching process. The first and second material layers are formed of materials that have the same main component but have different impurity contents, respectively.
摘要:
Methods of forming nonvolatile memory devices include forming a stack of layers of different materials on a substrate. This stack includes a plurality of first layers of a first material and a plurality of second layers of a second material arranged in an alternating sequence of first and second layers. A selected first portion of the stack of layers is isotropically etched for a sufficient duration to define a first trench therein that exposes sidewalls of the alternating sequence of first and second layers. The sidewalls of each of the plurality of first layers are selectively etched relative to sidewalls of adjacent ones of the plurality of second layers. Another etching step is then performed to recess sidewalls of the plurality of second layers and thereby expose portions of upper surfaces of the plurality of first layers. These exposed portions of the upper surfaces of the plurality of first layers, which may act as word lines of a memory device, are displaced laterally relative to each other.
摘要:
The inventive concept provides a wafer test method and a wafer test apparatus. The wafer test method can recognize the amount of residuals generated in a sidewall of the metal-containing layer pattern and the extent of corrosion of a sidewall of the metal-containing layer pattern using the measured electric resistance by supplying an electrolyte so that the electrolyte is in contact with a portion of the metal-containing layer pattern in a predetermined chip region and measuring an electric resistance between a first electrode which is electrically in contact with the other portion of the metal-containing layer pattern and a second electrode which is in contact with the electrolyte in the predetermined region. Thus, a wafer test method and a wafer test apparatus can be embodied by an in-line method without dividing a wafer into each chip.
摘要:
The inventive concept provides a wafer test method and a wafer test apparatus. The wafer test method can recognize the amount of residuals generated in a sidewall of the metal-containing layer pattern and the extent of corrosion of a sidewall of the metal-containing layer pattern using the measured electric resistance by supplying an electrolyte so that the electrolyte is in contact with a portion of the metal-containing layer pattern in a predetermined chip region and measuring an electric resistance between a first electrode which is electrically in contact with the other portion of the metal-containing layer pattern and a second electrode which is in contact with the electrolyte in the predetermined region. Thus, a wafer test method and a wafer test apparatus can be embodied by an in-line method without dividing a wafer into each chip.
摘要:
A method for fabricating a semiconductor device includes providing a semiconductor substrate including a memory cell region and peripheral circuit regions. Gate electrodes including gate conductive patterns and capping patterns are formed on the memory cell region and the peripheral circuit regions. An interlayer dielectric covering the gate electrodes is formed. The interlayer dielectric is patterned to form first contact holes exposing the semiconductor substrate along side of the gate electrode in the memory cell region and second contact holes exposing a portion of the capping pattern in the peripheral circuit region such that a bottom surface of the second contact hole is spaced apart from a top surface of the gate conductive pattern. A first plug conductive layer is filled in the first contact holes and a second plug conductive layer is filled in the second contact holes. A planarizing process is performed to expose the capping patterns such that first contact plugs are formed in the memory cell region and second contact plugs are formed in the peripheral circuit region.
摘要:
Provided is a method for manufacturing a MOS transistor. The method comprises providing a substrate having a first active region and a second active region; forming a dummy gate stack on the first active region and the second active region, the dummy gate stack comprising a gate dielectric layer and a dummy gate electrode; forming source/drain regions in the first active region and the second active region disposed at both sides of the dummy gate stack; forming a mold insulating layer on the source/drain region; removing the dummy gate electrode on the first active region to form a first trench on the mold insulating layer; forming a first metal pattern to form a second trench at a lower portion of the first trench, and removing the dummy gate electrode on the second active region to from a third trench on the mold insulating layer; and forming a second metal layer in the second trench and the third trench to form a first gate electrode on the first active region and a second gate electrode on the second active region.
摘要:
Provided is a method for manufacturing a MOS transistor. The method comprises providing a substrate having a first active region and a second active region; forming a dummy gate stack on the first active region and the second active region, the dummy gate stack comprising a gate dielectric layer and a dummy gate electrode; forming source/drain regions in the first active region and the second active region disposed at both sides of the dummy gate stack; forming a mold insulating layer on the source/drain region; removing the dummy gate electrode on the first active region to form a first trench on the mold insulating layer; forming a first metal pattern to form a second trench at a lower portion of the first trench, and removing the dummy gate electrode on the second active region to from a third trench on the mold insulating layer; and forming a second metal layer in the second trench and the third trench to form a first gate electrode on the first active region and a second gate electrode on the second active region.