摘要:
A fin type MOSFET and a method of manufacturing the fin type MOSFET are disclosed. Gate structures in the fin type MOSFET are formed by a damascene process without a photolithography process. Impurities used to form a channel region are selectively implanted into portions of a semiconductor substrate adjacent to the gate structures.
摘要:
In one aspect, a semiconductor substrate is provided having a cell area and a peripheral circuit area, and a mask layer is formed over the cell area and the peripheral circuit area of the semiconductor substrate. A FinFET gate is fabricated by forming a first opening in the mask layer to expose a first gate region in the cell area of the semiconductor substrate, and then forming a FinFET gate electrode in the first opening using a damascene process. A MOSFET gate fabricated by forming a second opening in the mask layer to expose a second gate region in the peripheral circuit area of the semiconductor substrate, and then forming a MOSFET gate electrode in the second opening using a damascene process.
摘要:
A fin type MOSFET and a method of manufacturing the fin type MOSFET are disclosed. Gate structures in the fin type MOSFET are formed by a damascene process without a photolithography process. Impurities used to form a channel region are selectively implanted into portions of a semiconductor substrate adjacent to the gate structures.
摘要:
A device isolation film and an active region are formed on a semiconductor substrate, using a first mask pattern to expose only a formation region of the device isolation film. Only the device isolation film is selectively etched by using the first mask pattern and a second mask pattern as an etch mask, to form a fin only on a gate formation region, the second mask pattern to expose only a gate electrode formation region. A gate insulation layer is formed on both sidewalls of the fin and a gate electrode covering the first mask pattern and the gate insulation layer is formed. Source and drain regions are formed on the remaining portion of the active region where the gate electrode was not formed. Gate electrode separation becomes adequate and manufacturing costs can be reduced.
摘要:
A method of forming an integrated circuit device includes forming a non-planar field-effect transistor in a cell array portion of a semiconductor substrate and forming a planar field-effect transistor in a peripheral circuit portion of the semiconductor substrate. The non-planar field-effect transistor may be selected from the group of a FinFET and a recessed gate FET. Dopants may be implanted into a channel region of the non-planar field-effect transistor, and a cell protection layer may be formed on the non-planar field-effect transistor. Then, dopants may be selectively implanted into a channel region of the planar field-effect transistor using the cell protection layer as a mask to block implanting of the dopants into the channel region of the non-planar field-effect transistor.
摘要:
A device isolation film and an active region are formed on a semiconductor substrate, using a first mask pattern to expose only a formation region of the device isolation film. Only the device isolation film is selectively etched by using the first mask pattern and a second mask pattern as an etch mask, to form a fin only on a gate formation region, the second mask pattern to expose only a gate electrode formation region. A gate insulation layer is formed on both sidewalls of the fin and a gate electrode covering the first mask pattern and the gate insulation layer is formed. Source and drain regions are formed on the remaining portion of the active region where the gate electrode was not formed. Gate electrode separation becomes adequate and manufacturing costs can be reduced.
摘要:
A method of forming an integrated circuit device includes forming a non-planar field-effect transistor in a cell array portion of a semiconductor substrate and forming a planar field-effect transistor in a peripheral circuit portion of the semiconductor substrate. The non-planar field-effect transistor may be selected from the group of a FinFET and a recessed gate FET. Dopants may be implanted into a channel region of the non-planar field-effect transistor, and a cell protection layer may be formed on the non-planar field-effect transistor. Then, dopants may be selectively implanted into a channel region of the planar field-effect transistor using the cell protection layer as a mask to block implanting of the dopants into the channel region of the non-planar field-effect transistor.
摘要:
A fin type MOSFET and a method of manufacturing the fin type MOSFET are disclosed. Gate structures in the fin type MOSFET are formed by a damascene process without a photolithography process. Impurities used to form a channel region are selectively implanted into portions of a semiconductor substrate adjacent to the gate structures.
摘要:
A method of forming a fin transistor using a damascene process is provided. A filling mold insulation pattern is recessed to expose an upper portion of a fin, and a mold layer is formed. The mold layer is patterned to form a groove crossing the fin and exposing a part of the upper portion of the fin. A gate electrode is formed to fill the groove with a gate insulation layer interposed between the fin and the gate electrode, and the mold layer is removed. Impurities are implanted through both sidewalls and a top surface of the upper portion of the fin disposed at opposite sides of a gate electrode to form a source/drain region.
摘要:
A fin type MOSFET and a method of manufacturing the fin type MOSFET are disclosed. Gate structures in the fin type MOSFET are formed by a damascene process without a photolithography process. Impurities used to form a channel region are selectively implanted into portions of a semiconductor substrate adjacent to the gate structures.