摘要:
Fast-dissolving pharmaceutical tablets comprising mannose are described. The mannose component imparts both structure-forming and fast-dissolution properties to the tablets. Granulation of tablet components and humidification forms strong liquid bridges at the surface interfaces of mannose particles, which leads to strengthened tablets. The mannose particles, however, remain porous following compression so that contact with moisture, e.g., saliva in the mouth, leads rapidly to tablet disintegration and dissolution.
摘要:
A fast-melting pharmaceutical tablet comprises a porous, plastic substance, a water penetration enhancer and a binder. One or more drugs can be incorporated into the formulation at different stages of the process so as to afford a pharmaceutically active tablet. Methods of making the pharmaceutical tablet entail combining the porous, plastic material, the water penetration enhancing agent, and the binder so as to form highly plastic granules, which are compressed into tablets. The resulting tablets dissolve rapidly in the mouth and have good hardness with low brittleness. The tablets are particularly valuable to those who have difficulty swallowing conventional pills.
摘要:
A fast-melting pharmaceutical tablet comprises a porous, plastic substance, a water penetration enhancer and a binder. One or more drugs can be incorporated into the formulation at different stages of the process so as to afford a pharmaceutically active tablet. Methods of making the pharmaceutical tablet entail combining the porous, plastic material, the water penetration enhancing agent, and the binder so as to form highly plastic granules, which are compressed into tablets. The resulting tablets dissolve rapidly in the mouth and have good hardness with low brittleness. The tablets are particularly valuable to those who have difficulty swallowing conventional pills.
摘要:
Fast-melting tablets contain particles of an active ingredient and ion-exchange resin complex to mask unpleasant taste associated with the active ingredient. The resin complex particles can be coated or uncoated to impart sustained release properties to the active ingredient. A fast-melting tablet also comprises a dry binder and bulk diluent to form highly plastic granules that are subsequently compressed into tablets.
摘要:
An expandable medical device has elongated struts joined together to form a substantially cylindrical device which is expandable from a cylinder having a first diameter to a cylinder having a second diameter. At least one of the struts includes at least one opening extending at least partially through a thickness of the strut. A beneficial agent is loaded into the opening within the strut in layers to achieve desired temporal release kinetics of the agent. Alternatively, the beneficial agent is loaded in a shape which is configured to achieve the desired agent delivery profile. A wide variety of delivery profiles can be achieved including zero order, pulsatile, increasing, decrease, sinusoidal, and other delivery profiles.
摘要:
Discrete microstructures of predefined size and shape are prepared using sol-gel phase-reversible hydrogel templates. An aqueous solution of hydrogel-forming material is covered onto a microfabricated silicon wafer master template having predefined microfeatures, such as pillars. A hydrogel template is formed, usually by lowering the temperature, and the formed hydrogel template is peeled away from the silicon master template. The wells of predefined size and shape on the hydrogel template are filled with a solution or a paste of a water-insoluble polymer, and the solvent is removed to form solid structures. The formed microstructures are released from the hydrogel template by simply melting the hydrogel template in water. The microstructures are collected by centrifugation. The microstructures fabricated by this method exhibit pre-defined size and shape that exactly correspond to the microwells of the hydrogel template. The method of preparing microstructures based on hydrogel templates is simple and can easily produce large quantities of the microstructures.
摘要:
A superporous hydrogel composite is formed by polymerizing one or more ethylenically-unsaturated monomers, and a multiolefinic crosslinking agent, in the presence of particles of a disintegrant and a blowing agent. The disintegrant, which rapidly absorbs water, serves to greatly increase the mechanical strength of the superporous hydrogel and significantly shorten the time required to absorb water and swell. Superporous hydrogel composites prepared by this method have an average pore size in the range of 10 &mgr;m to 3,000 &mgr;m. Preferred particles of disintegrant include natural and synthetic charged polymers, such as crosslinked sodium carboxymethylcellulose, crosslinked sodium starch glycolate, and crosslinked polyvinylpyrrolidone. The blowing agent is preferably a compound that releases gas bubbles upon acidification, such as NaHCO3. Improved hydrogel composites formed without a blowing agent are also provided.
摘要:
A vaccine composition including an antigen dispersed in an alginate gel is described. The alginate gel is preferably in the form of discrete particles coated with a polymer. Vaccination of vertebrate species can be accomplished by administering the alginate-based vaccine compositions orally.
摘要:
The implantable medical devices are configured to release at least one therapeutic agent from a matrix affixed to the implantable body with a release profile which is programmable to the agent and treatment. The matrix is formed such that the concentration of the therapeutic agent in the matrix varies as a gradient relative to a surface of the implantable body. The change in the concentration gradient of the agent in the matrix directly controls the rate of elution of the agent from the matrix. The therapeutic agent matrix can be disposed in the stent or on surfaces of the stent in various configurations, including within volumes defined by the stent, such as openings, holes, or concave surfaces, as a reservoir of agent, and alternatively as a coating on all or a portion of the surfaces of the stent structure.
摘要:
The present invention relates to method and apparatus for dispensing a beneficial agent into an expandable medical device. The method includes the step of placing an expandable medical device on a mandrel, the medical device forming a cylindrical device having a plurality of openings and dispensing a beneficial agent into the plurality of openings.