摘要:
The embodiments of methods and structures disclosed herein provide mechanisms of performing doping an inter-level dielectric film, ILD0, surrounding the gate structures with a dopant to reduce its etch rates during the processes of removing dummy gate electrode layer and/or gate dielectric layer for replacement gate technologies. The ILD0 film may be doped with a plasma doping process (PLAD) or an ion beam process. Post doping anneal is optional.
摘要:
The embodiments described provide mechanisms for doping oxide in the STIs with carbon to make etch rate in the narrow and wide structures equal and also to make corners of wide STIs strong. Such carbon doping can be performed by ion beam (ion implant) or by plasma doping. The hard mask layer can be used to protect the silicon underneath from doping. By using the doping mechanism, the even surface topography of silicon and STI enables patterning of gate structures and ILD0 gapfill for advanced processing technology.
摘要:
A method for improving uniformity of stressors of MOS devices is provided. The method includes forming a gate dielectric over a semiconductor substrate, forming a gate electrode on the gate dielectric, forming a spacer on respective sidewalls of the gate electrode and the gate dielectric, forming a recess in the semiconductor adjacent the spacer, and depositing SiGe in the recess to form a SiGe stressor. The method further includes etching the SiGe stressor to improve the uniformity of SiGe stressors.
摘要:
Novel etch stop layers for semiconductor devices and methods of forming thereof are disclosed. In one embodiment, an etch stop layer comprises tensile or compressive stress. In another embodiments, etch stop layers are formed having a first thickness in a first region of a workpiece and at least one second thickness in a second region of a workpiece, wherein the at least one second thickness is different than the first thickness. The etch stop layer may be thicker over top surfaces than over sidewall surfaces. The etch stop layer may be thicker over widely-spaced feature regions and thinner over closely-spaced feature regions.
摘要:
Disclosed herein are various embodiments of semiconductor devices and related methods of manufacturing a semiconductor device. In one embodiment, a method includes providing a semiconductor substrate and forming a metal silicide on the semiconductor substrate. In addition, the method includes treating an exposed surface of the metal silicide with a hydrogen/nitrogen-containing compound to form a treated layer on the exposed surface, where the composition of the treated layer hinders oxidation of the exposed surface. The method may then further include depositing a dielectric layer over the treated layer and the exposed surface of the metal silicide.
摘要:
The embodiments described provide methods and structures for doping oxide in the STIs with carbon to make etch rate in the narrow and wide structures equal and also to make corners of wide STIs strong. Such carbon doping can be performed by ion beam (ion implant) or by plasma doping. The hard mask layer can be used to protect the silicon underneath from doping. By using the doping mechanism, the even surface topography of silicon and STI enables patterning of gate structures and ILD0 gapfill for advanced processing technology.
摘要:
The present disclosure relates to a device and method for strain inducing or high mobility channel replacement in a semiconductor device. The semiconductor device is configured to control current from a source to a drain through a channel region by use of a gate. A strain inducing or high mobility layer produced in the channel region between the source and drain can result in better device performance compared to Si, faster devices, faster data transmission, and is fully compatible with the current semiconductor manufacturing infrastructure.
摘要:
A method of forming an integrated circuit includes forming a gate structure over a substrate. A plasma doping (PLAD) process is performed to at least a portion of the substrate that is adjacent to the gate structure. The doped portion of the substrate is annealed in an ambient with an oxygen-containing chemical.
摘要:
Provided is a semiconductor device including a substrate. A gate formed on the substrate. The gate includes a sidewall. A spacer formed on the substrate and adjacent the sidewall of the gate. The spacer has a substantially triangular geometry. A contact etch stop layer (CESL) is formed on the first gate and the first spacer. The thickness of the CESL to the width of the first spacer is between approximately 0.625 and 16.
摘要:
A method for forming stressors in a semiconductor substrate is provided. The method includes providing a semiconductor substrate including a first device region and a second device region, forming shallow trench isolation (STI) regions with a high-shrinkage dielectric material in the first and the second device regions wherein the STI regions define a first active region in the first device region and a second active region in the second device region, forming an insulation mask over the STI region and the first active region in the first device region wherein the insulation mask does not extend over the second device region, and performing a stress-tuning treatment to the semiconductor substrate. The first active region and second active region have tensile stress and compressive stress respectively. An NMOS and a PMOS device are formed on the first and second active regions, respectively.