摘要:
Compositions for use in microelectronic applications: Ra comprises one or more multiple bonds, provided that, if Ra comprises more than one multiple bond, these multiple bonds are not in a conjugated configuration; and R1, R2, R3 are independently selected from alkoxyl, hydroxyl, halide, OC(O)R, OC(O)OR, wherein R is alkyl or a substituted alkyl; and Rb is selected from H or a saturated group comprising alkyl, alkylene, or alkylidene; and R4, R5, R6 are independently alkoxyl, hydroxyl, halide, OC(O)R, OC(O)OR, wherein R is alkyl or a substituted alkyl; and Rc comprises more than one multiple bond, and these multiple bonds are in a conjugated configuration; and R7, R8, R9 are independently alkoxyl, hydroxyl, halide, OC(O)R, OC(O)OR, wherein R is alkyl or a substituted alkyl; and R10, R11, R12, R13 are independently alkoxyl, hydroxyl, halide, OC(O)R, OC(O)OR, wherein R is alkyl or a substituted alkyl.
摘要:
Compositions for use in microelectronic applications: Ra comprises one or more multiple bonds, provided that, if Ra comprises more than one multiple bond, these multiple bonds are not in a conjugated configuration; and R1, R2, R3 are independently selected from alkoxyl, hydroxyl, halide, OC(O)R, OC(O)OR, wherein R is alkyl or a substituted alkyl; and Rb is selected from H or a saturated group comprising alkyl, alkylene, or alkylidene; and R4, R5, R6 are independently alkoxyl, hydroxyl, halide, OC(O)R, OC(O)OR, wherein R is alkyl or a substituted alkyl; and Rc comprises more than one multiple bond, and these multiple bonds are in a conjugated configuration; and R7, R8, R9 are independently alkoxyl, hydroxyl, halide, OC(O)R, OC(O)OR, wherein R is alkyl or a substituted alkyl; and R10, R11, R12, R13 are independently alkoxyl, hydroxyl, halide, OC(O)R, OC(O)OR, wherein R is alkyl or a substituted alkyl.
摘要:
A composition comprising: A) polymer that comprises: L is CX—CYZ, where X, Y, and Z are independently hydrogen, an alkyl, or a substituted alkyl; and, M is an alkylene, an arylene, a substituted alkylene, a substituted arylene, or C(O)O—W—, where W is an alkylene or a substituted alkylene; and R′, R″, and R′″ are independently selected from an aromatic hydrocarbon, an aliphatic hydrocarbon, or a substituted hydrocarbon that comprises one or more of O, N, S, or Si atoms, provided that at least one of R′, R″, and R′″ is selected from alkoxyl, aryloxyl, hydroxyl, halide, carboxyl, or carbonate; and, p is from 1 to 10,000; and the polymer does not comprise a polyhedral oligomeric silsesquioxane structure; and B) a polymer formed from a composition comprising at least one Si-containing compound as described herein. Compositions are suitable for microelectronic applications, and have improved adhesion to photoresists polymers.
摘要:
A composition comprising: A) polymer that comprises: L is CX—CYZ, where X, Y, and Z are independently hydrogen, an alkyl, or a substituted alkyl; and, M is an alkylene, an arylene, a substituted alkylene, a substituted arylene, or C(O)O—W—, where W is an alkylene or a substituted alkylene; and R′, R″, and R′″ are independently selected from an aromatic hydrocarbon, an aliphatic hydrocarbon, or a substituted hydrocarbon that comprises one or more of O, N, S, or Si atoms, provided that at least one of R′, R″, and R′″ is selected from alkoxyl, aryloxyl, hydroxyl, halide, carboxyl, or carbonate; and, p is from 1 to 10,000; and the polymer does not comprise a polyhedral oligomeric silsesquioxane structure; and B) a polymer formed from a composition comprising at least one Si-containing compound as described herein. Compositions are suitable for microelectronic applications, and have improved adhesion to photoresists polymers.
摘要:
Bioelectrodes, methods of making bioelectrodes and methods of using bioelectrodes are provided. The bioelectrodes have an electrically-conductive substrate coated with an electroconductive polymer. The bioelectrode exhibits ohmic behavior over a range of about 1 Hz to about 100 KHz, where ohmic behavior means that the value of the impedance is independent of the signal frequency over the range of interest. The bioelectrode can transmit or receive an electrical signal between the electrically conductive substrate and the biological component through the conductive polymer.
摘要:
A method for making a composite membrane including the formation of a porous discriminating layer upon a surface of a porous support, including the step of a) forming a polymer blend comprising: i) a “blending” polymer and ii) a block copolymer comprising durable segments that form a co-continuous phase with the blending polymer and fugitive segments that form self-assembled assembled micro-domains within the co-continuous phase, and b) removing at least a portion of the fugitive segments to yield pores having an average size of ≦0.5 μm.
摘要:
A bimodal toughening agent comprising a) a first preformed coreshell toughening agent and b) a second preformed coreshell toughening agent wherein the second preformed coreshell toughening agent has a particle size of at least two times larger than that of the first preformed coreshell toughening agent, and the use of the bimodal toughening agent in a thermosettable epoxy resin composition, is disclosed.
摘要:
Bioelectrodes, methods of making bioelectrodes and methods of using bioelectrodes are provided. The bioelectrodes have an electrically-conductive substrate coated with an electroconductive polymer. The bioelectrode exhibits ohmic behavior over a range of about 1 Hz to about 100 KHz, where ohmic behavior means that the value of the impedance is independent of the signal frequency over the range of interest. The bioelectrode can transmit or receive an electrical signal between the electrically conductive substrate and the biological component through the conductive polymer.