摘要:
A light emitting diode structure and a light emitting diode structure forming method are provided. The light emitting diode structure includes a base, a diode chip, and a package lens. The diode chip is mounted on the base. The package lens covers the diode chip. The surface of the package lens includes a plurality of dot structures. The steps of the method include mounting a light-emitting diode chip on a base, assembling a package lens to cover the light emitting diodes chip, and forming a plurality of dot structures on the surface of the package lens.
摘要:
A light emitting diode structure and a light emitting diode structure forming method are provided. The light emitting diode structure includes a base, a diode chip, and a package lens. The diode chip is mounted on the base. The package lens covers the diode chip. The surface of the package lens includes a plurality of dot structures. The steps of the method include mounting a light-emitting diode chip on a base, assembling a package lens to cover the light emitting diodes chip, and forming a plurality of dot structures on the surface of the package lens.
摘要:
An LCD and a backlight module driving device and a method thereof are provided. The method is adapted to drive at least one backlight unit in a backlight module. The backlight unit is used for supplying a surface light source to an Nth area pixel of the LCD panel, where N is a positive integer. The method includes the following steps of first calculating a time of the Nth area pixel under a stable state in a frame period and then providing a control signal to drive the backlight unit when the Nth area pixel is under the stable state in the frame period.
摘要:
An LCD and a backlight module driving device and a method thereof are provided. The method is adapted to drive at least one backlight unit in a backlight module. The backlight unit is used for supplying a surface light source to an Nth area pixel of the LCD panel, where N is a positive integer. The method includes the following steps of first calculating a time of the Nth area pixel under a stable state in a frame period and then providing a control signal to drive the backlight unit when the Nth area pixel is under the stable state in the frame period.
摘要:
A color liquid-crystal display panel has a red filter segment in each red sub-pixel and a blue filter segment in each blue sub-pixel, but no green filter segment in green sub-pixels. The liquid-crystal display panel has a backlight source for illuminating, and the backlight source has green light producing components alternately switched on and off in consecutive frames. The backlight source also has white or red/blue, or purple light emitting components alternately switched on and off in consecutive frames in complementary phase to the green light producing components. When the liquid crystal layer segments associated with all the three color sub-pixels are operated in a light non-blocking state, only the white or red/blue light producing components are turned on, and when the liquid crystal layer segments associated with the red sub-pixels are operated in a light blocking state, only the green light producing components are turned on.
摘要:
The present invention is a backlight module including a housing, a reflective sheet, and a light source module. The housing has an inner side surface, an outer side surface, and a plurality of first openings. The reflective sheet is disposed on the inner side surface and has a plurality of second openings corresponding to the first openings. The light source module has a plurality of light sources, wherein the light source module is disposed on the outer side surface, and each of the light sources may penetrate each of the first openings and the second openings. When the light sources are dimmed or have other problems, the light source module can be taken apart from the housing to repair them easily.
摘要:
When temperature variation occurs to the LED dice of an LED lighting system, a feedback control mechanism is applied to compensate temperature-related wavelength shift for precisely controlling the light generated by the LED dice based on the voltage drop variation or current variation of the LED dice. The color control method for the LED lighting system includes a preliminary detection phase and a feedback control phase. In the preliminary detection phase, voltage drop signals or current signals together with corresponding color and hue signals of each LED module of the LED lighting system are detected. In the feedback control phase, signal compensating processes are performed to precisely control the light generated by the LED lighting system based on the voltage drop variation or the current variation in conjunction with the corresponding color and hue signals generated in the preliminary detection phase.
摘要:
A color liquid-crystal display panel has a red filter segment in each red sub-pixel and a blue filter segment in each blue sub-pixel, but no green filter segment in green sub-pixels. The liquid-crystal display panel has a backlight source for illuminating, and the backlight source has green light producing components alternately switched on and off in consecutive frames. The backlight source also has white or red/blue, or purple light emitting components alternately switched on and off in consecutive frames in complementary phase to the green light producing components. When the liquid crystal layer segments associated with all the three color sub-pixels are operated in a light non-blocking state, only the white or red/blue light producing components are turned on, and when the liquid crystal layer segments associated with the red sub-pixels are operated in a light blocking state, only the green light producing components are turned on.
摘要:
When temperature variation occurs to the LED dice of an LED lighting system, a feedback control mechanism is applied to compensate temperature-related wavelength shift for precisely controlling the light generated by the LED dice based on the voltage drop variation or current variation of the LED dice. The color control method for the LED lighting system includes a preliminary detection phase and a feedback control phase. In the preliminary detection phase, voltage drop signals or current signals together with corresponding color and hue signals of each LED module of the LED lighting system are detected. In the feedback control phase, signal compensating processes are performed to precisely control the light generated by the LED lighting system based on the voltage drop variation or the current variation in conjunction with the corresponding color and hue signals generated in the preliminary detection phase.
摘要:
A light-emitting adjustment method and a display device are provided. The display device includes a voltage source, a light-emitting diode array, a pulse width modulator, a current sensor and a light-emitting adjuster. The voltage source provides an operating voltage. The pulse width modulator provides operating pulse signals to multiple light-emitting diodes arranged in column in order. The current sensor senses a plurality of overall current values of the light-emitting diodes at different timings during the light-emitting diodes are sequentially enabled. The light-emitting adjuster computes an operating current value of each of the light-emitting diodes according to the overall current values and performs a compensation operation based on the operating current value to obtain and output a compensation signal.