摘要:
Disclosed is an operation for an optical system which achieves observation of focused ion beam processing equivalent to that in a case wherein a sample stage is tilted mechanically. In a focused ion beam optical system, an aperture, a tilting deflector, a beam scanner, and an objective lens are controlled so as to irradiate an ion beam tilted to the optical axis of the optical system, thereby achieving thin film processing and a cross section processing without accompanying adjustment and operation for a sample stage. The thin film processing and the cross section processing with a focused ion beam can be automated, and yield can be improved. For example, by applying the present invention to a cross section monitor to detect an end point, the cross section processing can be easily automated.
摘要:
Disclosed is an operation for an optical system which achieves observation of focused ion beam processing equivalent to that in a case wherein a sample stage is tilted mechanically. In a focused ion beam optical system, an aperture, a tilting deflector, a beam scanner, and an objective lens are controlled so as to irradiate an ion beam tilted to the optical axis of the optical system, thereby achieving thin film processing and a cross section processing without accompanying adjustment and operation for a sample stage. The thin film processing and the cross section processing with a focused ion beam can be automated, and yield can be improved. For example, by applying the present invention to a cross section monitor to detect an end point, the cross section processing can be easily automated.
摘要:
Separation and the like of an excised specimen from a specimen are automatically performed. Marks for improving image recognition accuracy are provided in a region that becomes an excised specimen in a specimen and a region other than said region, or in a transfer means for transferring the excised specimen and a specimen holder capable of holding the excised specimen, and the relative movement of the excised specimen and the specimen, and the like are recognized with high accuracy by image recognition. In the sampling of a minute specimen using a focused ion beam, the detection of an end point of processing for separation of the excised specimen from the specimen, and the like are automatically performed. Thus, for example, unmanned specimen excision becomes possible, and preparation of a lot of specimens becomes possible.
摘要:
Separation and the like of an excised specimen from a specimen are automatically performed. Marks for improving image recognition accuracy are provided in a region that becomes an excised specimen in a specimen and a region other than said region, or in a transfer means for transferring the excised specimen and a specimen holder capable of holding the excised specimen, and the relative movement of the excised specimen and the specimen, and the like are recognized with high accuracy by image recognition. In the sampling of a minute specimen using a focused ion beam, the detection of an end point of processing for separation of the excised specimen from the specimen, and the like are automatically performed. Thus, for example, unmanned specimen excision becomes possible, and preparation of a lot of specimens becomes possible.
摘要:
An object of the present invention is related to detecting of a detection signal at an optimum position in such a case that a sample plane is inclined with respect to a charged particle beam.The present invention is related to a charged particle beam apparatus for irradiating a charged particle beam to a sample, in which a detector is moved to a plurality of desirable positions around the sample so as to optimize positions of the detector. In accordance with the present invention, since it is possible to obtain an optimum detection signal in response to an attitude and a shape of the sample, a highly accurate sample observation, for instance, an SEM observation, an STEM observation, and an FIB observation can be carried out. Moreover, in an FIB-SEM apparatus, it is possible to highly accurately detect an end point of an FIB process.
摘要:
An object of the present invention is related to detecting of a detection signal at an optimum position in such a case that a sample plane is inclined with respect to a charged particle beam.The present invention is related to a charged particle beam apparatus for irradiating a charged particle beam to a sample, in which a detector is moved to a plurality of desirable positions around the sample so as to optimize positions of the detector. In accordance with the present invention, since it is possible to obtain an optimum detection signal in response to an attitude and a shape of the sample, a highly accurate sample observation, for instance, an SEM observation, an STEM observation, and an FIB observation can be carried out. Moreover, in an FIB-SEM apparatus, it is possible to highly accurately detect an end point of an FIB process.
摘要:
A plastic optical fiber low in attenuation in a high order mode and small in mode dispersion, is presented. The plastic optical fiber comprises at least a core and a clad surrounding the core, characterized in that the core has a refractive index which gradually decreases from the core center towards the outside in the radial direction of the plastic optical fiber, and the refractive index of the clad is lower than the refractive index of the core center and higher than the refractive index of the core periphery.
摘要:
A charged particle beam apparatus of the present invention comprises a transmission electron detector (113; 206) having a detection portion divided into multiple regions (201 to 205; 301 to 305), wherein a film thickness of a sample is calculated by detecting a transmission electron beam (112) generated from the sample when the sample is irradiated with an electron beam (109), as a signal of each of the regions in accordance with scattering angles of the transmission electron beam, and thereafter calculating the intensities of the individual signals. According to the above, there is provided a charged particle beam apparatus capable of performing accurate film thickness monitoring while suppressing an error due to an external condition and also capable of processing a thin film sample into a sample having an accurate film thickness, which makes it possible to improve the accuracy in structure observations, element analyses and the like.
摘要:
There is provided an apparatus and a method capable of preparing a standardized probe without need for working skill of probe processing. According to the present invention, a probe shape generation process of detecting a probe shape based on the probe incoming current detected by a probe current detection unit, a probe tip coordinate extraction process of detecting a tip position of the probe from the probe shape, a probe contour line extraction process of generating a probe contour line obtained by approximating a contour of the probe from the tip position of the probe and the probe shape, a probe center line extraction process of generating a center line and a vertical line of the probe from the probe contour line, a processing pattern generation process of generating a processing pattern based on the probe tip position, the probe center line, the probe vertical line, and a preset shape and dimension of a probe acute part, and an ion beam termination process of performing, based on the processing pattern, termination of ion-beam processing are performed.
摘要:
A plastic optical fiber low in attenuation in a high order mode and small in mode dispersion, is presented. The plastic optical fiber comprises at least a core and a clad surrounding the core, characterized in that the core has a refractive index which gradually decreases from the core center towards the outside in the radial direction of the plastic optical fiber, and the refractive index of the clad is lower than the refractive index of the core center and higher than the refractive index of the core periphery.