摘要:
Disclosed is a technique for allowing proper classification information to be provided to an edited image. When it is determined that the editing is cropping, a system controller cuts a decompressed image down to a desired size using an image processor and performs face detection on a crop image. The system controller generates a header for image data of an edited image. When the setting of automatically providing classification information is “ON”, classification information is automatically provided based on the detected face information.
摘要:
Disclosed is a technique for allowing proper classification information to be provided to an edited image. When it is determined that the editing is cropping, a system controller cuts a decompressed image down to a desired size using an image processor and performs face detection on a crop image. The system controller generates a header for image data of an edited image. When the setting of automatically providing classification information is “ON”, classification information is automatically provided based on the detected face information.
摘要:
The present invention relates to a digital camera, an image processing apparatus, an image processing method, an image processing system, and a program in which, plural trimming areas are set to image data displayed on a display, and the image data corresponding to the respective set trimming areas are continuously output and printed by a printer.
摘要:
An optical element includes a substrate including protruding structures on the surface and a hard coat layer formed on the substrate. An irregular shape is formed by the structures. An irregular shape resembling the irregular shape of the substrate is formed on a surface of the hard coat layer and is smoother than the that of the substrate. The size of bottoms of the structures changes at random within the range of the minimum distance Rm to the maximum distance RM (Rm: minimum value of the shortest distance from the center of gravity of the bottom of the structure to the rim of the bottom, RM: maximum value of the longest distance from the center of gravity of the bottom of the structure to the rim of the bottom). Neighboring structures have bottoms in contact or substantially in contact with one another. Rm and RM satisfy Rm/RM≦0.9.
摘要:
An anti-glare film is provided and includes a substrate and an anti-glare layer which is formed on the substrate and contains fine particles. The anti-glare layer has micro concave/convex shapes on the surface. The micro concave/convex shapes of the anti-glare layer are formed by coating the substrate with a coating material containing the fine particles and aggregating the fine particles by a convection of the coating material. A thickness of the anti-glare layer is equal to or larger than a mean diameter of the fine particles and is equal to or less than three times as large as the mean diameter of the fine particles. The fine particles are constructed substantially by fine particles having particle sizes less than twice as large as the thickness of the anti-glare layer.
摘要:
The invention provides a compound for the treatment or prophylaxis of pathology involving SNS, specifically diseases such as neuropathic pain, nociceptive pain, dysuria, multiple sclerosis and the like. The compound is represented by formula (1) or a pharmaceutically acceptable salt thereof wherein R1 is a hydrogen atom or the like, L is a single bond, —O— or the like, R2 is a phenyl group or the like, X is a carbon atom or a nitrogen atom, and R3, R4, R5a, R5b, R6 and R7 are each independently a substituted or unsubstituted alkyl group or the like:
摘要:
A method for producing an anti-glare film includes applying a coating composition including at least a resin, a solvent, and fine particles to a substrate; drying the coating composition applied to the substrate so that a Benard cell structure is formed in the surface of the coating layer due to convection caused during volatilization of the solvent; and curing the resin contained in the coating composition having formed therein a Benard cell structure to form an anti-glare layer having fine irregularities with a moderate surface waviness. The anti-glare layer has a degree of white muddiness of 1.7 or less, as measured by quantitatively determining a diffuse reflection component of the diffused light incident upon the surface of the anti-glare layer.
摘要:
An optical device is provided and includes a substrate having a three-dimensionally random concave-convex shape on the surface thereof, and a hard coat layer formed on the substrate, wherein a projection height with the maximum frequency on the substrate surface falls within the range of 1.5 μm or more and not more than 10 μm. Projections larger than the projection height with the maximum frequency on the substrate surface have a height falling within +3 μm from a central value of the projection height with the maximum frequency. A length RSm in a lateral direction of concaves and convexes on the substrate surface is 55 μm or more and not more than 500 μm.
摘要:
An anti-glare film is provided and includes a substrate and an anti-glare layer which is formed on the substrate and contains fine particles. The anti-glare layer has micro concave/convex shapes on the surface. The micro concave/convex shapes of the anti-glare layer are formed by coating the substrate with a coating material containing the fine particles and aggregating the fine particles by a convection of the coating material. A thickness of the anti-glare layer is equal to or larger than a mean diameter of the fine particles and is equal to or less than three times as large as the mean diameter of the fine particles. The fine particles are constructed substantially by fine particles having particle sizes less than twice as large as the thickness of the anti-glare layer.
摘要:
An anti-glare film has a plurality of diffuser elements, and has specified optical properties. The ratio of I(α+1)/I(α) is more than 0.1 to 0.6, where I(α) is an intensity of a light reflected toward an arbitrary angle α of 10° or less from a specular reflection direction of an incident light upon the surface at an angle of 5° to 30° from the surface normal, and I(α+1) is an intensity of a reflected light deviated from the arbitrary angle α by 1° in a wide-angle direction. The gain of a light reflected in the direction at 20° or more from the specular reflection direction of the incident light is 0.02 or less, in which the gain is obtained by normalizing a reflected light intensity using a specular reflection intensity of a standard diffuse plate as 1. The diffuser elements have an average space therebetween of 50 to 300 micrometers.