摘要:
Disclosed are a composite body, a method for producing the composite body and a semiconductor device, the composite body comprising a resin layer and a fine wiring and/or via hole being formed in the resin layer, having high adhesion and high reliability, and being capable of high frequencies. Also disclosed are a resin composition and a resin sheet, both of which can provide such a composite body.The composite body comprises a resin layer and an electroconductive layer, wherein a groove having a maximum width of 1 μm or more and 10 μm or less is on a surface of the resin layer; the electroconductive layer is inside the groove; and a surface of the resin layer being in contact with the electroconductive layer has an arithmetic average roughness (Ra) of 0.05 μm or more and 0.45 μm or less, and/or wherein the resin layer has a via hole having a diameter of 1 μm or more and 25 μm or less; the electroconductive layer is inside the via hole; and a surface of the resin layer of the inside of the via hole has an arithmetic average roughness (Ra) of 0.05 μm or more and 0.45 μm or less. The resin composition comprises an inorganic filler and a thermosetting resin, wherein the inorganic filler contains coarse particles having a diameter of more than 2 μm in an amount of 500 ppm or less. The resin sheet comprises a resin layer and a substrate, wherein the resin layer is on the substrate and comprises the resin composition.
摘要:
A circuit board (1) exhibits an average coefficient of thermal expansion (A) of the first insulating layer (21) in the direction along the substrate surface in a temperature range from 25 degrees C. to its glass transition point of equal to or higher than 3 ppm/degrees C. and equal to or lower than 30 ppm/degrees C. Further, an average coefficient of thermal expansion (B) of the second insulating layer (23) in the direction along the substrate surface in a temperature range from 25 degrees C. to its glass transition point is equivalent to an average coefficient of thermal expansion (C) of the third insulating layer (25) in the direction along the substrate surface in a temperature range from 25 degrees C. to its glass transition point. (B) and (C) are larger than (A), and a difference between (A) and (B) and a difference between (A) and (C) are equal to or higher than 5 ppm/degrees C. and equal to or lower than 35 ppm/degrees C.
摘要:
According to one embodiment, a profile measuring apparatus comprises a profile measuring unit, a position acquiring unit, a profile calculating unit, a deflection detecting unit, and a controlling unit. The profile measuring unit has a projecting unit to project a pattern onto a measured object, and an imaging unit to image the pattern. The position acquiring unit acquires a position of the pattern on the measured object. The profile calculating unit calculates a profile of the measured object, based on image information from the imaging unit and position information from the position acquiring unit. The deflection detecting unit detects deflection of the projecting unit. The controlling unit executes active correction for the profile measuring unit and/or passive correction for the profile calculating unit, based on the deflection of the projecting unit detected by the deflection detecting unit.
摘要:
A colorant comprising an aggregate of a molecule having a squarylium skeleton and having a maximum absorption wavelength at about 500 nm to about 600 nm in a molecular dispersion state.
摘要:
A circuit board (1) exhibits an average coefficient of thermal expansion (A) of the first insulating layer (21) in the direction along the substrate surface in a temperature range from 25 degrees C. to its glass transition point of equal to or higher than 3 ppm/degrees C. and equal to or lower than 30 ppm/degrees C. Further, an average coefficient of thermal expansion (B) of the second insulating layer (23) in the direction along the substrate surface in a temperature range from 25 degrees C. to its glass transition point is equivalent to an average coefficient of thermal expansion (C) of the third insulating layer (25) in the direction along the substrate surface in a temperature range from 25 degrees C. to its glass transition point. (B) and (C) are larger than (A), and a difference between (A) and (B) and a difference between (A) and (C) are equal to or higher than 5 ppm/degrees C. and equal to or lower than 35 ppm/degrees C.
摘要:
The black color material includes a condensation product of a pyrrole compound represented by the following formula (1) and a squaric acid represented by the following formula (2):
摘要:
The present invention provides a recording medium containing a first image formed with a first recording material; and a second image comprising a first region formed with a second recording material having approximately the same light fastness as that of the first recording material, and a second region formed with a third recording material having higher light fastness than that of the first recording material, a color of the second region being a color corresponding to any stage of a process of discoloration of the first region.
摘要:
According to one embodiment, a profile measuring apparatus comprises a profile measuring unit, a position acquiring unit, a profile calculating unit, a deflection detecting unit, and a controlling unit. The profile measuring unit has a projecting unit to project a pattern onto a measured object, and an imaging unit to image the pattern. The position acquiring unit acquires a position of the profile measuring unit. The profile calculating unit calculates a profile of the measured object, based on image information from the imaging unit and position information from the position acquiring unit. The deflection detecting unit detects deflection of the projecting unit. The controlling unit executes active correction for the profile measuring unit and/or passive correction for the profile calculating unit, based on the deflection of the projecting unit detected by the deflection detecting unit.
摘要:
The present invention provides a recording medium containing a first image formed with a first recording material; and a second image comprising a first region formed with a second recording material having approximately the same light fastness as that of the first recording material, and a second region formed with a third recording material having higher light fastness than that of the first recording material, a color of the second region being a color corresponding to any stage of a process of discoloration of the first region.