摘要:
There is provided a laminated body comprising a first resin layer consisting of a first fibrous base material and a resin and a second resin layer consisting of a second fibrous base material and a resin, wherein the first resin layer and the second resin layer are disposed such that the first resin layer and the second resin layer are at least partly positioned in separate regions separated by the center line in a thickness direction of the laminated body; wherein at least one of the first fibrous base material and the second fibrous base material has a bowing region where a bowing region is a region in which a smaller warp/weft crossing angle is less than 90° in the fibrous base material; and wherein in the bowing region, an angle formed by a warp of the first fibrous base material and a warp of the second fibrous base material and an angle formed by a weft of the first fibrous base material and a weft of the second fibrous base material, whichever is larger, is 2° or less.
摘要:
The present invention provides: an insulating substrate or metal-clad laminate able to sufficiently reduce or prevent negative warping of a semiconductor device; a printed wiring board that uses the insulating substrate or metal-clad laminate; and a semiconductor device. The insulating substrate is composed of a cured product of a laminate including one or more fibrous base material layers and two or more resin layers, in which the outermost layers on both sides is the resin layers. At least one of the fibrous base material layers is shifted towards the first side or a second side on the opposite side thereof with respect to the reference position, namely the dividing position at which a total thickness of the insulating substrate is equally divided by the number of the fibrous base material layers and each divided region having the thickness is further equally divided by two. The fibrous base material layers are not shifted in different directions. It is possible to produce a printed wiring board by using, as a core substrate, a metal-clad laminate containing the insulating substrate. Also, it is possible to produce a semiconductor device by mounting a semiconductor element onto the printed wiring board.
摘要:
Disclosed are a composite body, a method for producing the composite body and a semiconductor device, the composite body comprising a resin layer and a fine wiring and/or via hole being formed in the resin layer, having high adhesion and high reliability, and being capable of high frequencies. Also disclosed are a resin composition and a resin sheet, both of which can provide such a composite body.The composite body comprises a resin layer and an electroconductive layer, wherein a groove having a maximum width of 1 μm or more and 10 μm or less is on a surface of the resin layer; the electroconductive layer is inside the groove; and a surface of the resin layer being in contact with the electroconductive layer has an arithmetic average roughness (Ra) of 0.05 μm or more and 0.45 μm or less, and/or wherein the resin layer has a via hole having a diameter of 1 μm or more and 25 μm or less; the electroconductive layer is inside the via hole; and a surface of the resin layer of the inside of the via hole has an arithmetic average roughness (Ra) of 0.05 μm or more and 0.45 μm or less. The resin composition comprises an inorganic filler and a thermosetting resin, wherein the inorganic filler contains coarse particles having a diameter of more than 2 μm in an amount of 500 ppm or less. The resin sheet comprises a resin layer and a substrate, wherein the resin layer is on the substrate and comprises the resin composition.
摘要:
An insulating resin layer, which is capable of being employed for forming a multiple-layered printed wiring board via a thermal compression forming process, comprising: at least one first layer and at least one second layer being stacked, wherein a specific dielectric constant of the first layer at a frequency of 1 MHz after the thermal compression forming is not more than 3.2, and wherein a linear expansion coefficient of the second layer at a temperature within a range of from not lower than 35 degree C. to not higher than 85 degree C. after the thermal compression forming is not more than 40 ppm/degree C. A multiple-layered printed wiring board, formed by disposing the aforementioned insulating resin layer over at least one side of an internal layer circuit board, and then conducting a thermal compression forming process.
摘要:
There is provided a laminated body comprising a first resin layer consisting of a first fibrous base material and a resin and a second resin layer consisting of a second fibrous base material and a resin, wherein the first resin layer and the second resin layer are disposed such that the first resin layer and the second resin layer are at least partly positioned in separate regions separated by the center line in a thickness direction of the laminated body; wherein at least one of the first fibrous base material and the second fibrous base material has a bowing region where a bowing region is a region in which a smaller warp/weft crossing angle is less than 90° in the fibrous base material; and wherein in the bowing region, an angle formed by a warp of the first fibrous base material and a warp of the second fibrous base material and an angle formed by a weft of the first fibrous base material and a weft of the second fibrous base material, whichever is larger, is 2° or less.