摘要:
A nonvolatile counter circuit is disclosed which includes a nonvolatile insulated gate type field effect memory transistor interposed between the load and active elements of a flip-flop circuit. A switching element is connected in parallel with the memory transistor and a circuit is provided for returning information stored in the nonvolatile memory transistor to the flip-flop after the circuit power source has been turned on. A circuit is also provided for erasing the information stored in the nonvolatile memory transistor. A circuit element is provided for short-circuiting the switching element, and a circuit is provided for writing the information stored in the flip-flop circuit into the nonvolatile memory transistor at the transient of switching off the power.
摘要:
A Unified Memory may store multiple types of content such as data or fast code or slow code. The data or code may be stored in separate arrays or in a common array. In an array, a tag bit may indicate the type of content such as data or fast code or slow code or single level or multilevel content. Tag bit may indicate communication interface or IO driver type. Sense amplifiers may be configurable based on the type of data being read. A Flash Security Measure is used to protect a protected memory area. A Flash Security Key is used for authentication and authorization a particular memory area. A XCAM (e.g., CAM) array is included in the Unified Memory. Unified Memory Concurrency is included.
摘要:
An integrated memory circuit has two flash memory arrays and at least one SRAM memory array. The three memory arrays are interconnected by an external address bus and data bus to a main control decoder sequencer which interfaces with the external environment. In addition, the flash and SRAM memory arrays are connected by an internal address and data bus. Through the use of modified software data protection scheme, erase and programming of one flash memory array can occur simultaneously with the reading or writing of data from the SRAM array or the reading of data from the other flash memory array. In addition, data transfer between one flash memory array and the SRAM memory array can occur simultaneously while reading of data occurs from the other flash memory array.
摘要:
A Unified Memory may store multiple types of content such as data or fast code or slow code. The data or code may be stored in separate arrays or in a common array. In an array, a tag bit may indicate the type of content such as data or fast code or slow code or single level or multilevel content. Tag bit may indicate communication interface or IO driver type. Sense amplifiers may be configurable based on the type of data being read. A Flash Security Measure is used to protect a protected memory area. A Flash Security Key is used for authentication and authorization a particular memory area. A XCAM (e.g., CAM) array is included in the Unified Memory. Unified Memory Concurrency is included.
摘要:
A Unified Memory may store multiple types of content such as data or fast code or slow code. The data or code may be stored in separate arrays or in a common array. In an array, a tag bit may indicate the type of content such as data or fast code or slow code or single level or multilevel content. Tag bit may indicate communication interface or IO driver type. Sense amplifiers may be configurable based on the type of data being read. A Flash Security Measure is used to protect a protected memory area. A Flash Security Key is used for authentication and authorization a particular memory area. A XCAM (e.g., CAM) array is included in the Unified Memory. Unified Memory Concurrency is included.
摘要:
A field-programmable redundancy apparatus for integrated circuit semiconductor memory arrays is disclosed. The present invention allows the user to replace a defective memory cell with a redundant memory cell while the integrated circuit memory array is in the field. The user communicates with the redundancy apparatus over standard signal paths of the integrated circuit semiconductor memory array and with standard voltage levels. The redundancy apparatus detects a predetermined code sequence on one or more of the address and data lines of the memory array to enter a special redundancy-reconfiguration mode. In the reconfiguration mode, the redundancy apparatus provides information on the availability and functionality of the redundant memory cells and enables the user to replace a defective memory cell with a selected redundant memory cell. The field-programmable redundancy apparatus may comprise nonvolatile memory means, such as EEPROM's, to store the replacements of primary memory cells with redundant memory cells. In the reconfiguration mode, detection of a second predetermined code sequence causes the reconfiguration mode to be exited.
摘要:
A nonvolatile, semiconductor randon access memory cell comprising a static RAM element and a nonvolatile memory element having differential charge storage capabilities is presented. The static RAM and nonvolatile memory elements are interconnected to allow information to be exchanged between two elements, thus allowing the faster static RAM element to serve as the primary memory to the system and allowing the nonvolatile memory element to serve as permanent storage during power-down conditions. In one embodiment, the nonvolatile memory element comprises two electrically erasable PROM devices (EEPROMs). The two EEPROM devices store differential charges corresponding to the complementary outputs of the static RAM element. The nature of the differential charge storage allows lower programming voltages to be used on the EEPROM devices, resulting in increased storage intergrity and increased endurance of the EEPROM devices.
摘要:
A differential non-volatile content addressable memory array has a differential non-volatile content addressable memory cell which uses a pair of non-volatile storage elements. Each of the non-volatile storage elements can be a split-gate floating gate transistor or a stack gate floating gate transistor having a first terminal, a second terminal, a channel therebetween and a floating gate over at least a portion of the channel to control the conduction of electrons in the channel, and a control gate. The floating gate storage transistor can be in one of two states: a first state, such as erase, in which current can flow between the first terminal and the second terminal, and a second state, such as programmed, in which substantially no current flows between the first terminal and the second terminal. A pair of differential compare data lines connects to the control gate of each of the pair of non-volatile floating gate transistors. A match line connects to the first terminal of each of the pair of non-volatile floating gate transistors to a first voltage. Finally, the second terminals of each storage element is connected to a second voltage, different from the first voltage. A current passing through the memory cell is indicative of a mis-match between the contents of the compare data lines and the contents of the storage elements.
摘要:
A Unified Memory may store multiple types of content such as data or fast code or slow code. The data or code may be stored in separate arrays or in a common array. In an array, a tag bit may indicate the type of content such as data or fast code or slow code or single level or multilevel content. Tag bit may indicate communication interface or IO driver type. Sense amplifiers may be configurable based on the type of data being read. A Flash Security Measure is used to protect a protected memory area. A Flash Security Key is used for authentication and authorization a particular memory area. A XCAM (e.g., CAM) array is included in the Unified Memory. Unified Memory Concurrency is included.
摘要:
A nonvolatile reprogrammable switch for use in a PLD or FPGA has a nonvolatile memory cell connected to the gate of an MOS transistor, which is in a well, with the terminals of the MOS transistor connected to the source of the signal and to the circuit. The nonvolatile memory cell is of a split gate type having a first region and a second region, with a channel therebetween. The cell has a floating gate positioned over a first portion of the channel, which is adjacent to the first region and a control gate positioned over a second portion of the channel, which is adjacent to the second region. The second region is connected to the gate of the MOS transistor. The cell is programmed by injecting electrons from the channel onto the floating gate by hot electron injection mechanism. The cell is erased by Fowler-Nordheim tunneling of the electrons from the floating gate to the control gate. As a result, no high voltage is ever applied to the second region during program or erase. In addition, a MOS FET transistor has a terminal connected to the well, and another end to a voltage source, with the gate connected to the non-volatile memory cell. The switch also has a circuit element connecting the gate of the MOS transistor to a voltage source. The threshold voltage of the well can be dynamically changed by turning on/off the MOS FET transistor.