摘要:
Disclosed is a semiconductor device including a resistive change element between a first wiring and a second wiring, which are arranged in a vertical direction so as to be adjacent to each other, with an interlayer insulation film being interposed on a semiconductor substrate. The resistive change element includes a lower electrode, a resistive change element film made of a metal oxide and an upper electrode. Since the upper electrode on the resistive change element film is formed as part of a plug for the second wiring, a structure in which a side surface of the upper electrode is not in direct contact with the side surface of the metal oxide or the lower electrode is provided so that it is possible to realize excellent device characteristics, even when a byproduct is adhered to the side wall of the metal oxide or the lower electrode in the etching thereof.
摘要:
Disclosed is a semiconductor device including a resistive change element between a first wiring and a second wiring, which are arranged in a vertical direction so as to be adjacent to each other, with an interlayer insulation film being interposed on a semiconductor substrate. The resistive change element includes a lower electrode, a resistive change element film made of a metal oxide and an upper electrode. Since the upper electrode on the resistive change element film is formed as part of a plug for the second wiring, a structure in which a side surface of the upper electrode is not in direct contact with the side surface of the metal oxide or the lower electrode is provided so that it is possible to realize excellent device characteristics, even when a byproduct is adhered to the side wall of the metal oxide or the lower electrode in the etching thereof.
摘要:
To provide a resistance change element which can reduce the current required to switch the state to the high resistance state from the low resistance state. The resistance change element according to the exemplary embodiment includes three or more electrodes, none of the electrodes supplying ion to a resistance change material (205). It includes a material (206) which does not show resistance change arranged between an electrode (207) and the resistance change material (205), and current pathways formed at two electrodes (204) other than the electrode (207).
摘要:
A semiconductor memory device includes a variable resistance element including a first electrode, a current path forming region, and a second electrode. The current path forming region includes a first region made of a variable resistance material whose resistivity changes by applying voltage, and a second region formed by doping a metal element to the variable resistance material such that a resistivity of the second region is higher than that of the first region and is not changed by applying a voltage used to change the resistivity of the first region. The first region is in contact with the first electrode and the second electrode, and extends from one electrode side to the other electrode side. The second region is provided outside the first region in at least part of the current path forming region in direction extending from one electrode side to the other electrode side.
摘要:
A variable resistance element is formed by sandwiching a metal oxide layer whose resistance changes between a pair of electrodes and the metal oxide layer includes a pair of variable resistance layers whose resistances change by formation of a current path and a branching suppression layer which is sandwiched between the variable resistance layers and suppresses branching of the current path.
摘要:
To use a resistance change element having an MIM structure, which is obtained by stacking a metal, a metal oxide, and a metal, as a switching element, it is necessary to achieve OFF resistance higher than that required in a memory element by a factor of at least 1000. On the other hand, when a resistance change element is used as a memory element and when the difference between the ON resistance and the OFF resistance is a large value, high performance, for example, a short readout time, can be achieved. The present invention therefore provides a resistance change element capable of maintaining low ON resistance and achieving high OFF resistance. High OFF resistance can be achieved while low ON resistance is maintained by adding a second metal that is not contained in a metal oxide, which is a resistance change material, the second metal being capable of charge-compensating for metal deficiency or oxygen deficiency.
摘要:
To provide a resistance change element which can reduce the current required to switch the state to the high resistance state from the low resistance state.The resistance change element according to the exemplary embodiment includes three or more electrodes, none of the electrodes supplying ion to a resistance change material (205). It includes a material (206) which does not show resistance change arranged between an electrode (207) and the resistance change material (205), and current pathways formed at two electrodes (204) other than the electrode (207).
摘要:
A semiconductor memory device includes a variable resistance element including a first electrode, a current path forming region, and a second electrode. The current path forming region includes a first region made of a variable resistance material whose resistivity changes by applying voltage, and a second region formed by doping a metal element to the variable resistance material such that a resistivity of the second region is higher than that of the first region and is not changed by applying a voltage used to change the resistivity of the first region. The first region is in contact with the first electrode and the second electrode, and extends from one electrode side to the other electrode side. The second region is provided outside the first region in at least part of the current path forming region in direction extending from one electrode side to the other electrode side.
摘要:
A variable resistance element includes a first conductive portion; an insulating film pattern provided on the first conductive portion; a level difference with respect to the upper surface of the first conductive portion, the level difference being formed of the insulating film pattern; a variable resistance film provided on a side surface of the level difference and having contact with the upper surface of the first conductive portion on the lower-end side of the side surface of the level difference; and a second conductive portion having contact with the variable resistance film on the upper-end side of the side surface of the level difference.
摘要:
A variable resistance element is formed by sandwiching a metal oxide layer whose resistance changes between a pair of electrodes and the metal oxide layer includes a pair of variable resistance layers whose resistances change by formation of a current path and a branching suppression layer which is sandwiched between the variable resistance layers and suppresses branching of the current path.