摘要:
A zeolite based SCR catalyst for NOx reduction using a reducing agent for treating exhaust streams from industrial and commercial boilers is provided. The reactor system has a zeolite based catalyst arranged in catalyst cassettes in a modular fashion where the reactor containing the zeolite based SCR catalyst cassettes is placed in a perpendicular direction to the exhaust exiting the industrial and/or commercial boiler. The catalyst selectively reduces nitrogen oxides to nitrogen with a reducing agent at low to medium temperatures. The reactor results in high NOx conversions and very low ammonia slip and is active for a wide range of boiler firing conditions. Boilers with low NOx and/or ultra low NOx burners can be replaced with a standard conventional burner for overall emissions reduction performance, efficiency improvements and energy savings. Boilers with low NOx and ultra low NOx burners can also be fitted with this zeolite based SCR catalyst reactor for additional NOx reductions and energy savings.
摘要:
The present invention is a method for selective reduction of nitrogen oxides in a gas stream with ammonia wherein the ammonia is vaporized prior to contacting it with the carrying fluid. The present invention also comprises a reducing agent dispersion system for use in substantially uniformly mixing a reducing agent with nitrogen oxides in a flue gas stream comprising a header and a plurality of lances. Further, the present invention comprises a novel reactor design for use in selective reduction of nitrogen oxides in a gas stream.
摘要:
A zeolite based SCR catalyst for NOx reduction using a reducing agent for treating exhaust streams from industrial and commercial boilers is provided. The reactor system has a zeolite based catalyst arranged in catalyst cassettes in a modular fashion where the reactor containing the zeolite based SCR catalyst cassettes is placed in a perpendicular direction to the exhaust exiting the industrial and/or commercial boiler. The catalyst selectively reduces nitrogen oxides to nitrogen with a reducing agent at low to medium temperatures. The reactor results in high NOx conversions and very low ammonia slip and is active for a wide range of boiler firing conditions. Boilers with low NOx and/or ultra low NOx burners can be replaced with a standard conventional burner for overall emissions reduction performance, efficiency improvements and energy savings. Boilers with low NOx and ultra low NOx burners can also be fitted with this zeolite based SCR catalyst reactor for additional NOx reductions and energy savings.
摘要:
The present invention is a method for selective reduction of nitrogen oxides in a gas stream with ammonia wherein the ammonia is vaporized prior to contacting it with the carrying fluid. The present invention also comprises a reducing agent dispersion system for use in substantially uniformly mixing a reducing agent with nitrogen oxides in a flue gas stream comprising a header and a plurality of lances. Further, the present invention comprises a novel reactor design for use in selective reduction of nitrogen oxides in a gas stream.
摘要:
This invention is an emission control system wherein the boiler hosts a reactor which contains one or more catalysts for the purpose of reducing NOx and/or CO in the emissions. The reactor containing the NOx/CO catalysts may be placed at a place where the temperature is in the range of 300-1000° F. The hot flue gas can be diverted using control dampers and blended with colder flue gas inside the boiler to achieve the desired flue gas temperature for the selected catalyst. NOx is removed by the SCR catalyst inside the boiler upon injecting a suitable reducing agent (e.g. ammonia, or hydrocarbons). The CO and NOx catalysts may be used in any order. The emission control system is an integral part of the boiler, and the existing capabilities of the boiler to recover the heat from flue gas, after the catalyst layers, is utilized such that the overall boiler efficiency remains high.
摘要:
A system and method of maintaining an optimal temperature range for a catalyst section in a HRSG comprising placing a portion of the exhaust stream in a heat exchanger and superheater, diverting a second portion around the heat exchanger and superheater, combining the two portions and contacting the two portions with a catalyst section. Alternatively, a system of heat exchangers are employed to address the fluctuating exhaust temperature caused by the intermittent use of the duct burners.
摘要:
A system and method of maintaining an optimal temperature range for a catalyst section in a HRSG comprising placing a portion of the exhaust stream in a heat exchanger and superheater, diverting a second portion around the heat exchanger and superheater, combining the two portions and contacting the two portions with a catalyst section. Alternatively, a system of heat exchangers are employed to address the fluctuating exhaust temperature caused by the intermittent use of the duct burners.
摘要:
A catalyst system and a method for reducing nitrogen oxides in an exhaust gas by reduction with a hydrocarbon or oxygen-containing organic compound reducing agent are provided. The catalyst system contains a silver catalyst and a modifier catalyst, where the modifier catalyst contains a modifier oxide, where the modifier oxide is selected from the group consisting of iron oxide, cerium oxide, copper oxide, manganese oxide, chromium oxide, a lanthanide oxide, an actinide oxide, molybdenum oxide, tin oxide, indium oxide, rhenium oxide, tantalum oxide, osmium oxide, barium oxide, calcium oxide, strontium oxide, potassium oxide, vanadium oxide, nickel oxide, tungsten oxide, and mixtures thereof. The modifier oxide is supported on an inorganic oxide support or supports, where at least one of the inorganic oxide supports is an acidic support. The catalyst system of the silver catalyst and the modifier catalyst provides higher NOx conversion than either the silver catalyst or the modifier catalyst alone.
摘要:
Embodiments of the present disclosure include a catalyst for the conversion of CO and/or hydrocarbons in an exhaust stream including a Sn compound selected from the group consisting of a binary composition comprising Sn and Ti, a ternary composition comprising Sn, Ti and Zr, and mixtures of any thereof. In those embodiments, the binary composition may include Sn(X)Ti(y)O2, wherein x+y=1, 0.85>y>0. In other embodiments of the present disclosure, the Sn compound includes a ternary composition including Sn(a)Ti(b)Zr(c)O2, wherein a is 0.25, b is 0.25 and c is 0.5. Certain embodiments of this disclosure include a method for the conversion of CO in an exhaust stream, including contacting an exhaust stream containing CO with the catalyst described above containing a Sn compound. In other embodiments, the exhaust stream includes hydrocarbons.