摘要:
Although it is known that exchange bias can be utilized in abutted junctions for longitudinal stabilization, a relatively large moment is needed to pin down the sensor edges effectively. Due to the inverse dependence of the exchange bias on the magnetic layer thickness, a large exchange bias has been difficult to achieve by the prior art. This problem has been solved by introducing a structure in which the magnetic moment of the bias layer has been approximately doubled by pinning it from both above and below through exchange with antiferromagnetic layers. Additionally, since the antiferromagnetic layer is in direct abutted contact with the free layer, it acts directly to help stabilize the sensor edge, which is an advantage over the traditional magnetostatic pinning that had been used.
摘要:
Although it is known that exchange bias can be utilized in abutted junctions for longitudinal stabilization, a relatively large moment is needed to pin down the sensor edges effectively. Due to the inverse dependence of the exchange bias on the magnetic layer thickness, a large exchange bias has been difficult to achieve by the prior art. This problem has been solved by introducing a structure in which the magnetic moment of the bias layer has been approximately doubled by pinning it from both above and below through exchange with antiferromagnetic layers. Additionally, since the antiferromagnetic layer is in direct abutted contact with the free layer, it acts directly to help stabilize the sensor edge, which is an advantage over the traditional magnetostatic pinning that had been used.
摘要:
Although it is known that exchange bias can be utilized in abutted junctions for longitudinal stabilization, a relatively large moment is needed to pin down the sensor edges effectively. Due to the inverse dependence of the exchange bias on the magnetic layer thickness, a large exchange bias has been difficult to achieve by the prior art. This problem has been solved by introducing a structure in which the magnetic moment of the bias layer has been approximately doubled by pinning it from both above and below through exchange with antiferromagnetic layers. Additionally, since the antiferromagnetic layer is in direct abutted contact with the free layer, it acts directly to help stabilize the sensor edge, which is an advantage over the traditional magnetostatic pinning that had been used.
摘要:
A problem associated with current bottom spin valve designs is that it is difficult to avoid magnetic charge accumulation at the edge of the sensor area, making a coherent spin rotation during sensing difficult to achieve. This problem has been eliminated by introducing an exchange coupling layer between the free layer and the ferromagnetic layer that is used to achieve longitudinal bias for stabilization and by extending the free layer well beyond the sensor area. After all layers have been deposited, the read gap is formed by etching down as far as this layer. Since it is not critical exactly how much of the biasing layers (antiferromagnetic as well as ferromagnetic) are removed, the etching requirements are greatly relaxed. Whatever material remains in the gap is then oxidized thereby providing a capping layer as well as a good interface for specular reflection in the sensor region.
摘要:
A problem associated with current bottom spin valve designs is that it is difficult to avoid magnetic charge accumulation at the edge of the sensor area, making a coherent spin rotation during sensing difficult to achieve. This problem has been eliminated by introducing an exchange coupling layer between the free layer and the ferromagnetic layer that is used to achieve longitudinal bias for stabilization and by extending the free layer well beyond the sensor area. After all layers have been deposited, the read gap is formed by etching down as far as this layer. Since it is not critical exactly how much of the biasing layers (antiferromagnetic as well as ferromagnetic) are removed, the etching requirements are greatly relaxed. Whatever material remains in the gap is then oxidized thereby providing a capping layer as well as a good interface for specular reflection in the sensor region.
摘要:
In a conventional spin valve the shunt resistance of the pinning layer reduces the overall efficiency of the device. This problem has been overcome by using IrMn for the pinning layer at a thickness of about 20 Angstroms or less. For the IrMn to be fully effective it must be subjected to a two-step anneal, first in the presence of a high field (about 10 kOe) for several hours and then in a low field (about 500 Oe) while it cools. The result, in addition to improved pinning, is the ability to do testing at the full film and full wafer levels.
摘要:
In this invention, we replace low resistivity NiFe with high-resistivity FeNi for the FL2 portion of a composite free layer in a CIP GMR sensor in order to minimize current shunting effects while still retaining both magnetic softness and low magnetostriction. A process for manufacturing the device is also described.
摘要:
A problem associated with current bottom spin valve designs is that it is difficult to avoid magnetic charge accumulation at the edge of the sensor area, making a coherent spin rotation during sensing difficult to achieve. This problem has been eliminated by introducing an exchange coupling layer between the free layer and the ferromagnetic layer that is used to achieve longitudinal bias for stabilization and by extending the free layer well beyond the sensor area. After all layers have been deposited, the read gap is formed by etching down as far as this layer. Since it is not critical exactly how much of the biasing layers (antiferromagnetic as well as ferromagnetic) are removed, the etching requirements are greatly relaxed. Whatever material remains in the gap is then oxidized thereby providing a capping layer as well as a good interface for specular reflection in the sensor region.
摘要:
In a conventional spin valve the shunt resistance of the pinning layer reduces the overall efficiency of the device. This problem has been overcome by using IrMn for the pinning layer at a thickness of about 20 Angstroms or less. For the IrMn to be fully effective it must be subjected to a two-step anneal, first in the presence of a high field (about 10 kOe) for several hours and then in a low field (about 500 Oe) while it cools. The result, in addition to improved pinning, is the ability to do testing at the full film and full wafer levels.
摘要:
A pinned/pinning layer configuration of the form: AP1/coupling bilayer/AP2/AFM, suitable for use in a CIP or CPP GMR sensor, a TMR sensor or an MRAM element, is found to have improved magnetic stability, yield good values of dR/R and have high values of saturation magnetization that can be adjusted to meet the requirements of magnetic field annealing. The coupling bilayer is a layer of Ru/Rh or their alloys, which provides a wide range of coupling strengths by varying either the thickness of the Ru layer or the Rh layer.