摘要:
Although it is known that exchange bias can be utilized in abutted junctions for longitudinal stabilization, a relatively large moment is needed to pin down the sensor edges effectively. Due to the inverse dependence of the exchange bias on the magnetic layer thickness, a large exchange bias has been difficult to achieve by the prior art. This problem has been solved by introducing a structure in which the magnetic moment of the bias layer has been approximately doubled by pinning it from both above and below through exchange with antiferromagnetic layers. Additionally, since the antiferromagnetic layer is in direct abutted contact with the free layer, it acts directly to help stabilize the sensor edge, which is an advantage over the traditional magnetostatic pinning that had been used.
摘要:
Although it is known that exchange bias can be utilized in abutted junctions for longitudinal stabilization, a relatively large moment is needed to pin down the sensor edges effectively. Due to the inverse dependence of the exchange bias on the magnetic layer thickness, a large exchange bias has been difficult to achieve by the prior art. This problem has been solved by introducing a structure in which the magnetic moment of the bias layer has been approximately doubled by pinning it from both above and below through exchange with antiferromagnetic layers. Additionally, since the antiferromagnetic layer is in direct abutted contact with the free layer, it acts directly to help stabilize the sensor edge, which is an advantage over the traditional magnetostatic pinning that had been used.
摘要:
Although it is known that exchange bias can be utilized in abutted junctions for longitudinal stabilization, a relatively large moment is needed to pin down the sensor edges effectively. Due to the inverse dependence of the exchange bias on the magnetic layer thickness, a large exchange bias has been difficult to achieve by the prior art. This problem has been solved by introducing a structure in which the magnetic moment of the bias layer has been approximately doubled by pinning it from both above and below through exchange with antiferromagnetic layers. Additionally, since the antiferromagnetic layer is in direct abutted contact with the free layer, it acts directly to help stabilize the sensor edge, which is an advantage over the traditional magnetostatic pinning that had been used.
摘要:
A method for fabricating a longitudinally hard biased, bottom spin valve GMR sensor with a lead overlay (LOL) conducting lead configuration and a narrow effective trackwidth. The advantageous properties of the sensor are obtained by providing two novel barrier layers, one of which prevents oxidation of and Au diffusion into the free layer during annealing and etching and the other of which prevents oxidation of the capping layer during annealing so as to allow good electrical contact between the lead and the sensor stack.
摘要:
A method for fabricating a longitudinally hard biased, bottom spin valve GMR sensor with a lead overlay (LOL) conducting lead configuration and a narrow effective trackwidth. The advantageous properties of the sensor are obtained by providing two novel barrier layers, one of which prevents oxidation of and Au diffusion into the free layer during annealing and etching and the other of which prevents oxidation of the capping layer during annealing so as to allow good electrical contact between the lead and the sensor stack.
摘要:
A method for fabricating a longitudinally hard biased, bottom spin valve GMR sensor with a lead overlay (LOL) conducting lead configuration and a narrow effective trackwidth. The advantageous properties of the sensor are obtained by providing two novel barrier layers, one of which prevents oxidation of and Au diffusion into the free layer during annealing and etching and the other of which prevents oxidation of the capping layer during annealing so as to allow good electrical contact between the lead and the sensor stack.
摘要:
A method of manufacturing a magnetoresistive head comprises forming a magnetoresistive structure with a magnetoresistive element with a first AFM element. Perform a first annealing step at a high temperature with a high magnetic field. Form the remaining MR structure including second AFM elements. Perform a low magnetic field (H.sub.ann) annealing step following the fabrication of the second AFM elements. Then perform a no externally applied field (H.sub.ann =0) annealing step at a high temperature to increase the H.sub.ex of the second AFM element to full strength, whereby the stability of the first AFM element is enhanced or increases its H.sub.ex if there were a decrease during the low magnetic field annealing step.
摘要:
A method for forming a spin-valve type abutted junction GMR sensor element with a thinner hard magnetic longitudinal bias layer having significantly improved magnetic properties in the junction region and a spin-valve type abutted junction GMR sensor element with a thinner hard magnetic longitudinal bias layer having significantly improved magnetic properties in the junction region fabricated according to that method.
摘要:
The possibility of shorting between a spin valve and its underlying magnetic shield layer can be largely eliminated by choosing the bottom spin valve structure. However, doing so causes the hard longitudinal bias that is standard for all such devices to degrade. The present invention overcomes this problem by inserting a thin NiCr, Ni, Fe, or Cr layer between the antiferromagnetic layer and the longitudinal bias layers. This provides a smoother surface for the bias layers to be deposited onto, thereby removing structural distortions to the longitudinal bias layer that would otherwise be present. A process for manufacturing the structure is also described.
摘要:
A high data-rate stitched pole magnetic read/write-head combining sputtered and plated high magnetic moment materials and a method for fabricating same. The plating and stitching aspects of this fabrication allow the formation of a very narrow write-head, while the sputtering permits the use of high magnetic moment materials having high resistivity and low coercivity.