Abstract:
A mask for laser irradiation includes a base substrate, a laser beam shielding pattern on a first surface of the base substrate, wherein the laser beam shielding pattern is made of an opaque metallic material and has laser beam transmitting portions spaced apart from each other, and an anti-thermal oxidation layer covering the laser beam shielding pattern, wherein a second surface of the base substrate is an incident surface of a laser beam.
Abstract:
A laser annealing apparatus for sequential lateral solidification (SLS) to uniformly crystallize silicon on an entire silicon substrate by minimizing the dislocation of the silicon substrate during laser beam irradiation is disclosed. During the laser annealing, a vacuum chuck holds the silicon substrate on a movable stage. The device includes a laser source, an optical system patterning the shape and energy of a laser beam irradiated from the laser source, a vacuum chuck supporting a silicon substrate, and a movable stage supporting the vacuum chuck as well as transferring the vacuum chuck in a predetermined direction. Accordingly, the apparatus improves the degree of crystallization because it is able to uniformly carry out SLS on an entire surface of the silicon substrate.
Abstract:
A laser annealing apparatus for sequential lateral solidification (SLS) to uniformly crystallize silicon on an entire silicon substrate by minimizing the dislocation of the silicon substrate during laser beam irradiation is disclosed. During the laser annealing, a vacuum chuck holds the silicon substrate on a movable stage. The device includes a laser source, an optical system patterning the shape and energy of a laser beam irradiated from the laser source, a vacuum chuck supporting a silicon substrate, and a movable stage supporting the vacuum chuck as well as transferring the vacuum chuck in a predetermined direction. Accordingly, the apparatus improves the degree of crystallization because it is able to uniformly carry out SLS on an entire surface of the silicon substrate.
Abstract:
A sequential lateral solidification mask having a first region with a plurality of first stripes that are separated by a plurality of first slits. The mask further includes a second region having a plurality of second stripes separated by a plurality of second slits. The second stripes are perpendicular to the first stripes. A third region having a plurality of third stripes separated by a plurality of third slits, with the third stripes being transversely arranged relative to the first stripes. A fourth region having a plurality of fourth stripes and a plurality of fourth slits between the fourth stripes, with the fourth stripes being transversely arranged relative to the second stripes. Sequential lateral solidification is performed using the mask by multiple movements of the mask and multiple, overlapping irradiations.
Abstract:
A mask and its application in sequential lateral solidification (SLS) crystallization of amorphous silicon are provided. The mask includes a light absorptive portion for blocking a laser beam and a plurality of stripe-shaped light transmitting portions for passing the laser beam. Each stripe-shaped light transmitting portion is rectangular-shaped, and each light-transmitting portion includes triangular-shaped or semicircular-shaped edges on both sides. The distance between the adjacent light transmitting portions is less than the width of the light transmitting portion. The width of the light transmitting portions is less than or equal to twice the maximum length of lateral grain growth that is to be grown by sequential lateral solidification (SLS).
Abstract:
A laser annealing apparatus has a laser generating section for producing a laser beam, a splitter arranged to partially reflect and partially transmit the laser beam. The apparatus has a first energy converting section for measuring the energy value of the laser beam reflected from the splitter and outputting it into an electrical signal and has an energy control section for comparing the output signal of the first energy converting section to a reference value and automatically correcting the energy value by the difference between them. A process window may be positioned so the laser beam can pass through a built-in slit for annelaing a substrate. The apparatus further has a second energy converting section for measuring the energy value of the laser beam passing through the process window. In response to the output of the second energy converting section, the energy control section corrects the energy intensity of the laser beam.
Abstract:
A fabricating method of an array substrate for a liquid crystal display device including forming a polycrystalline silicon film on a substrate having a display region and a peripheral region, the polycrystalline silicon film having grains of square shape, forming a first active layer in the display region and a second active layer in the peripheral region by etching the polycrystalline silicon film, forming a first gate electrode over the first active layer, a second gate electrode over the second active layer and a gate line connected to the first gate electrode, and forming first source and drain electrodes connected to the first active layer, second source and drain electrodes connected to the second active layer and data line connected to the first source electrode. Further, the second gate electrode overlaps the first active layer to form a first channel region, and the first channel region is formed inside one of the grains.
Abstract:
An apparatus and method for canceling an interference signal in a broadband wireless communication system are provided. A receiver of a wireless communication system includes at least two receive antennas for receiving a target signal of a serving base station and interference signals of at least one neighbor base station; a channel estimator for estimating channels of the signals received through the receive antennas; and a detector for detecting the target signal using channel estimation values of the received signals. Accordingly, it is possible to reduce error propagation caused by the incorrect estimation and detection of the interference signal. In addition, time delay for detecting/restoring/removing the interference signal does not occur. Moreover, the increase of additional buffers can be prevented. Consequently, the increase of hardware complexity can be prevented.
Abstract:
A sequential lateral solidification apparatus includes a laser generator for generating and emitting a laser beam; an X-Y stage movable in two orthogonal axial directions; and a mask arranged between the laser generator and the X-Y stage. The mask has a plurality of slits through which the laser beam passes. An objective lens for scaling down the laser beam is arranged between the mask and the X-Y stage. A mask stage is connected to the mask for controlling minute movement of the mask for crystallizing amorphous silicon in one block.
Abstract:
A method of forming a polycrystalline silicon layer includes: disposing a mask over the amorphous silicon layer, the mask having a plurality of transmissive regions, the plurality of transmissive regions being disposed in a stairstep arrangement spaced apart from each other in a first direction and a second direction substantially perpendicular from the first direction, each transmissive region having a central portion and first and second side portions that are adjacent to opposite ends of the central portion along the first direction, and wherein each of the portions has a length along the first direction and a width along the second direction, and wherein the width of first and second portions decreases away from the central portion along the first direction; irradiating a laser beam onto the amorphous silicon layer a first time through the mask to form a plurality of first irradiated regions corresponding to the plurality of transmissive regions, each first irradiated region having a central portion, and first and second side portions at both sides of the central portion; moving the substrate and the mask relative to one another such that the first side portion of each transmissive region overlaps the central portion of each first irradiated region; and irradiating the laser beam onto the amorphous silicon layer a second time through the mask to form a plurality of second irradiated regions corresponding to the plurality of transmissive regions.