摘要:
A nonvolatile memory element includes a current controlling element having a non-linear current-voltage characteristic, a resistance variable element which changes reversibly between a low-resistance state and a high-resistance state in which a resistance value of the resistance variable element is higher than a resistance value of the resistance variable element in the low-resistance state, in response to voltage pulses applied, and a fuse. The current controlling element, the resistance variable element and the fuse are connected in series, and the fuse is configured to be blown when the current controlling element is substantially short-circuited.
摘要:
A manufacturing method for manufacturing, with a simple process, a non-volatile memory apparatus having a stable memory performance includes: (a) forming a stacking-structure body above a substrate by alternately stacking conductive layers comprising a transition metal and interlayer insulating films comprising an insulating material; (b) forming a contact hole penetrating through the stacking-structure body to expose part of each of the conductive layers; (c) forming variable resistance layers by oxidizing the part of each of the conductive layers, the part being exposed in the contact hole, and each of the variable resistance layers having a resistance value that reversibly changes according to an application of an electric signal; and (d) forming a pillar electrode in the contact hole by embedding a conductive material in the contact hole, the pillar electrode being connected to each of the variable resistance layers.
摘要:
Each of memory cells (MC) includes one transistor and one resistance variable element. The transistor includes a first main terminal, a second main terminal and a control terminal. The resistance variable element includes a first electrode, a second electrode and a resistance variable layer provided between the first electrode and the second electrode. A first main terminal of one of two adjacent memory cells is connected to a second main terminal of the other memory cell, to form a series path (SP) sequentially connecting main terminals of the plurality of memory cells in series. Each of the memory cells is configured such that the control terminal is a part of a first wire (WL) associated with the memory cell or is connected to the first wire associated with the memory cell, the second electrode is a part of a second wire (SL) associated with the memory cell or is connected to the second wire associated with the memory cell; and the first electrode is a part of a series path (SP) associated with the memory cell or is connected to the series path associated with the memory cell.
摘要:
A manufacturing method for manufacturing, with a simple process, a non-volatile memory apparatus having a stable memory performance includes: (a) forming a stacking-structure body above a substrate by alternately stacking conductive layers comprising a transition metal and interlayer insulating films comprising an insulating material; (b) forming a contact hole penetrating through the stacking-structure body to expose part of each of the conductive layers; (c) forming variable resistance layers by oxidizing the part of each of the conductive layers, the part being exposed in the contact hole, and each of the variable resistance layers having a resistance value that reversibly changes according to an application of an electric signal; and (d) forming a pillar electrode in the contact hole by embedding a conductive material in the contact hole, the pillar electrode being connected to each of the variable resistance layers.
摘要:
Provided are a nonvolatile memory element which is capable of effectively preventing an event that when a failure occurs in a certain nonvolatile memory element, data cannot be written to and read from another nonvolatile memory element belonging to the same column or row as that to which the nonvolatile memory element in a failed state belongs, and a semiconductor memory device including the nonvolatile memory element.A nonvolatile memory element comprises a current controlling element (112) having a non-linear current-voltage characteristic, a resistance variable element (105) which changes reversibly between a low-resistance state and a high-resistance state in which a resistance value of the resistance variable element is higher than a resistance value of the resistance variable element in the low-resistance state, in response to voltage pulses applied, and a fuse (103), the current controlling element (112), the resistance variable element (105) and the fuse (103) being connected in series, and the fuse (103) being configured to be blown when the current controlling element (112) is substantially short-circuited.
摘要:
A stacking structure in which a stacked body (21) including a first conductive layer (13), a semiconductor layer (17), and a second conductive layer (18) and an interlayer insulating film (16) are alternately stacked in parallel to a substrate, a plurality of columnar electrodes (12) arranged so as to penetrated through the stacking structure in a stacking direction, a variable resistance layer (14) which is disposed between the columnar electrode (12) and the first conductive layer (13) and which has a resistance value that reversibly changes according to an application of an electric signal are included. The variable resistance layer (14) is formed by oxidizing part of the first conductive layer (13). The variable resistance layer (14) and an insulating film for electrically separating the semiconductor layer (17) and the second conductive layer (18) from the columnar electrode (12) are simultaneously formed in a single oxidation process.
摘要:
Each of memory cells (MC) includes one transistor and one resistance variable element. The transistor includes a first main terminal, a second main terminal and a control terminal. The resistance variable element includes a first electrode, a second electrode and a resistance variable layer provided between the first electrode and the second electrode. A first main terminal of one of two adjacent memory cells is connected to a second main terminal of the other memory cell, to form a series path (SP) sequentially connecting main terminals of the plurality of memory cells in series. Each of the memory cells is configured such that the control terminal is a part of a first wire (WL) associated with the memory cell or is connected to the first wire associated with the memory cell, the second electrode is a part of a second wire (SL) associated with the memory cell or is connected to the second wire associated with the memory cell; and the first electrode is a part of a series path (SP) associated with the memory cell or is connected to the series path associated with the memory cell.
摘要:
A stacking structure in which a stacked body (21) including a first conductive layer (13), a semiconductor layer (17), and a second conductive layer (18) and an interlayer insulating film (16) are alternately stacked in parallel to a substrate, a plurality of columnar electrodes (12) arranged so as to penetrated through the stacking structure in a stacking direction, a variable resistance layer (14) which is disposed between the columnar electrode (12) and the first conductive layer (13) and which has a resistance value that reversibly changes according to an application of an electric signal are included. The variable resistance layer (14) is formed by oxidizing part of the first conductive layer (13). The variable resistance layer (14) and an insulating film for electrically separating the semiconductor layer (17) and the second conductive layer (18) from the columnar electrode (12) are simultaneously formed in a single oxidation process.
摘要:
In a current rectifying element (10), a barrier height φA of a center region (14) of a barrier layer (11) in a thickness direction thereof sandwiched between a first electrode layer (12) and a second electrode layer (13) is formed to be larger than a barrier height φB of a region in the vicinity of an interface (17) between the barrier layer (11) and the first electrode layer (12) and an interface (17) between the barrier layer (11) and the second electrode layer (13). The barrier layer (11) has, for example, a triple-layer structure of barrier layers (11a), (11b) and (11c). The barrier layers (11a), (11b) and (11c) are, for example, formed by SiN layers of SiNx2, SiNx1, and SiNx1 (X1
摘要:
Provided is a nonvolatile storage device (200) capable of stably operating without increasing a size of a selection transistor included in each of memory cells. The nonvolatile storage device (200) includes: a semiconductor substrate (301) which has a P-type well (301a) of a first conductivity type; a memory cell array (202) which includes memory cells (M11) or the like each of which includes a variable resistance element (R11) and a transistor (N11) that are formed above the semiconductor substrate (301) and connected in series; and a substrate bias circuit (220) which applies, to the P-type well (301a), a bias voltage in a forward direction with respect to a source and a drain of the transistor (N11), when a voltage pulse for writing is applied to the variable resistance element (R11) included in the selected memory cell (M11) or the like.