摘要:
Semiconductor structures and processes for fabricating semiconductor structures comprising hafnium oxide layers modified with lanthanum oxide or a lanthanide-series metal oxide are provided. A semiconductor structure in accordance with an embodiment of the invention comprises an amorphous layer of hafnium oxide overlying a substrate. A lanthanum-containing dopant or a lanthanide-series metal-containing dopant is comprised within the amorphous layer of hafnium oxide. The process comprises growing an amorphous layer of hafnium oxide overlying a substrate. The amorphous layer of hafnium oxide is doped with a dopant having the chemical formulation LnOx, where Ln is lanthanum, a lanthanide-series metal, or a combination thereof, and X is any number greater than zero. The doping step may be performed during or after growth of the amorphous layer of hafnium oxide.
摘要:
Methods are provided for fabricating semiconductor structures and semiconductor device structures utilizing epitaxial Hf3Si2 layers. A process in accordance with one embodiment of the invention begins by disposing a silicon substrate in a processing chamber. The pressure within the processing chamber and a temperature of the silicon substrate in the range of approximately 250° C. to approximately 700° C. is established. A layer of Hf3Si2 then is grown overlying the silicon substrate at a rate in the range of about one (1) to about five (5) monolayers per minute.
摘要翻译:提供了用于制造使用外延Hf 3 Si 2层的半导体结构和半导体器件结构的方法。 根据本发明的一个实施例的方法开始于将硅衬底设置在处理室中。 处理室内的压力和硅衬底的温度在大约250℃至大约700℃的范围内。 然后以约1(1)至约5(5)单层/分钟的速率在硅衬底上生长一层Hf 3 Si 2。
摘要:
A method for fabricating a semiconductor structure comprises the steps of providing a silicon substrate (10) having a surface (12); forming on the surface of the silicon substrate an interface (14) comprising a single atomic layer of silicon, oxygen, and a metal; and forming one or more layers of a single crystal oxide (26) on the interface. The interface comprises an atomic layer of silicon, oxygen, and a metal in the form XSiO2, where X is a metal.
摘要:
Semiconductor structures and processes for fabricating semiconductor structures comprising hafnium oxide layers modified with lanthanum oxide or a lanthanide-series metal oxide are provided. A semiconductor structure in accordance with an embodiment of the invention comprises an amorphous layer of hafnium oxide overlying a substrate. A lanthanum-containing dopant or a lanthanide-series metal-containing dopant is comprised within the amorphous layer of hafnium oxide. The process comprises growing an amorphous layer of hafnium oxide overlying a substrate. The amorphous layer of hafnium oxide is doped with a dopant having the chemical formulation LnOx, where Ln is lanthanum, a lanthanide-series metal, or a combination thereof, and X is any number greater than zero. The doping step may be performed during or after growth of the amorphous layer of hafnium oxide.
摘要翻译:提供半导体结构和制造半导体结构的方法,其包括用氧化镧或镧系金属氧化物改性的氧化铪层。 根据本发明的实施例的半导体结构包括覆盖在衬底上的氧化铪的非晶层。 含镧掺杂剂或含镧系金属的掺杂剂包含在氧化铪的非晶层内。 该方法包括在衬底上生长氧化铪的非晶层。 氧化铪的非晶层掺杂有具有化学配方LnO x x的掺杂剂,其中Ln是镧,镧系金属或其组合,X是大于零的任何数。 掺杂步骤可以在氧化铪的非晶层生长期间或之后进行。
摘要:
A ferromagnetic semiconductor structure is provided. The structure includes a monocrystalline semiconductor substrate and a doped titanium oxide anatase layer overlying the semiconductor substrate.
摘要:
A method for removing silicon oxide from a surface of a substrate is disclosed. The method includes depositing material onto the silicon oxide (110) and heating the substrate surface to a sufficient temperature to form volatile compounds including the silicon oxide and the deposited material (120). The method also includes heating the surface to a sufficient temperature to remove any remaining deposited material (130).
摘要:
High quality epitaxial layers of monocrystalline oxide materials (24) can be grown overlying monocrystalline substrates (22) such as large silicon wafers. The monocrystalline oxide layer (24) comprises a layer of monocrystalline oxide spaced apart from the silicon wafer by an amorphous interface layer (28) of silicon oxide. The amorphous interface layer serves as a decoupling layer between the substrate and the buffer layer so that the substrate and the buffer is crystal-graphically, chemically, and dielectrically decoupled. In addition, high quality epitaxial accommodating buffer layers may be formed overlying vicinal substrates using a low pressure, low temperature, alkaline-earth metal-rich process.
摘要:
A method of fabricating a semiconductor structure including the steps of: providing a silicon substrate having a surface; forming by atomic layer deposition a monocrystalline seed layer on the surface of the silicon substrate; and forming by atomic layer deposition one or more layers of a monocrystalline high dielectric constant oxide on the seed layer, where providing a substrate includes providing a substrate having formed thereon a silicon oxide, and wherein forming by atomic layer deposition a seed layer further includes depositing a layer of a metal oxide onto a surface of the silicon oxide, flushing the layer of metal oxide with an inert gas, and reacting the metal oxide and the silicon oxide to form a monocrystalline silicate.
摘要:
A method for fabricating a semiconductor structure comprises the steps of providing a silicon substrate (10) having a surface (12); forming on the surface of the silicon substrate an interface (14) comprising a single atomic layer of silicon, nitrogen, and a metal; and forming one or more layers of a single crystal oxide (26) on the interface. The interface comprises an atomic layer of silicon, nitrogen, and a metal in the form MSiN2, where M is a metal. In a second embodiment, the interface comprises an atomic layer of silicon, a metal, and a mixture of nitrogen and oxygen in the form MSi[N1−Ox]2, where M is a metal and X is 0≦X
摘要:
A method for fabricating a semiconductor structure including the steps of providing a silicon substrate (10) having a surface (12); forming an interface including a seed layer (18) adjacent to the surface (12) of the silicon substrate (10), forming a buffer layer (20) utilizing molecular oxygen; and forming one or more layers of a high dielectric constant oxide (22) on the buffer layer (20) utilizing activated oxygen.