摘要:
A method for fabricating a semiconductor structure comprises the steps of providing a silicon substrate (10) having a surface (12); forming on the surface of the silicon substrate an interface (14) comprising a single atomic layer of silicon, nitrogen, and a metal; and forming one or more layers of a single crystal oxide (26) on the interface. The interface comprises an atomic layer of silicon, nitrogen, and a metal in the form MSiN2, where M is a metal. In a second embodiment, the interface comprises an atomic layer of silicon, a metal, and a mixture of nitrogen and oxygen in the form MSi[N1−Ox]2, where M is a metal and X is 0≦X
摘要:
A method for fabricating a semiconductor structure comprises the steps of providing a silicon substrate (10) having a surface (12); forming on the surface of the silicon substrate an interface (14) comprising a single atomic layer of silicon, oxygen, and a metal; and forming one or more layers of a single crystal oxide (26) on the interface. The interface comprises an atomic layer of silicon, oxygen, and a metal in the form XSiO2, where X is a metal.
摘要:
A semiconductor structure comprises a silicon substrate (10), one or more layers of single crystal oxides or nitrides (26), and an interface (14) between the silicon substrate and the one or more layers of single crystal oxides or nitrides, the interface manufactured with a crystalline material which matches the lattice constant of silicon. The interface comprises an atomic layer of silicon, nitrogen, and a metal in the form MSiN2, where M is a metal. In a second embodiment, the interface comprises an atomic layer of silicon, a metal, and a mixture of nitrogen and oxygen in the form MSi[N1−xOx]2, where M is a metal and X is 0≦X
摘要翻译:半导体结构包括硅衬底(10),一层或多层单晶氧化物或氮化物(26),以及在硅衬底和一层或多层单晶氧化物或氮化物之间的界面(14),界面 用与硅的晶格常数匹配的结晶材料制成。 该界面包括硅,氮和MSiN 2形式的金属的原子层,其中M是金属。 在第二个实施方案中,界面包括形式为MSi [N1-xOx] 2的硅原子层,金属和氮和氧的混合物,其中M是金属,X是0 <= X <1。
摘要:
A method for fabricating a semiconductor structure comprises the steps of providing a silicon substrate (10) having a surface (12); forming on the surface of the silicon substrate an interface (14) comprising a single atomic layer of silicon, oxygen, and a metal; and forming one or more layers of a single crystal oxide (26) on the interface. The interface comprises an atomic layer of silicon, oxygen, and a metal in the form XSiO2, where X is a metal.
摘要:
A method of forming a thin silicide layer on a silicon substrate 12 including heating the surface of the substrate to a temperature of approximately 500.degree. C. to 750.degree. C. and directing an atomic beam of silicon 18 and an atomic beam of an alkaline-earth metal 20 at the heated surface of the substrate in a molecular beam epitaxy chamber at a pressure in a range below 10.sup.-9 Torr. The silicon to alkaline-earth metal flux ratio is kept constant (e.g. Si/Ba flux ratio is kept at approximately 2:1) so as to form a thin alkaline-earth metal silicide layer (e.g. BaSi.sub.2) on the surface of the substrate. The thickness is determined by monitoring in situ the surface of the single crystal silicide layer with RHEED and terminating the atomic beam when the silicide layer is a selected submonolayer to one monolayer thick.
摘要:
High quality epitaxial layers of monocrystalline oxide materials (24) can be grown overlying monocrystalline substrates (22) such as large silicon wafers. The monocrystalline oxide layer (24) comprises a layer of monocrystalline oxide spaced apart from the silicon wafer by an amorphous interface layer (28) of silicon oxide. The amorphous interface layer serves as a decoupling layer between the substrate and the buffer layer so that the substrate and the buffer is crystal-graphically, chemically, and dielectrically decoupled. In addition, high quality epitaxial accommodating buffer layers may be formed overlying vicinal substrates using a low pressure, low temperature, alkaline-earth metal-rich process.
摘要:
Circuit (10) has a dual layer gate dielectric (29) formed over a semiconductor substrate (14). The gate dielectric includes an amorphous layer (40) and a monocrystalline layer (42). The monocrystalline layer typically has a higher dielectric constant than the amorphous layer.
摘要:
Circuit (10) has a dual layer gate dielectric (29) formed over a semiconductor substrate (14). The gate dielectric includes an amorphous layer (40) and a monocrystalline layer (42). The monocrystalline layer typically has a higher dielectric constant than the amorphous layer.
摘要:
A method and a vending apparatus for self-checkout unpackaged products is disclosed. The vending apparatus holds goods on one or more product trays. Load cells are mounted under each product tray and can measure the weight of the goods on the product tray in real time. A user may use a credit/debit card or an online payment app to unlock the vending apparatus and to initiate a purchase. The user may take any desired amount of goods. The apparatus automatically detects the type of goods and the weight amount taken by the user and calculates the total cost. After the user payment, the apparatus automatically resets the initial weight of the goods and is ready for the next transaction. The present invention improves the vending machine technology and expands its application to offering unpackaged products.
摘要:
The present invention relates to a method for quantifying the relative content of a protein in a sample. The present invention also relates to a method for comprising the relative content of a protein in at least two samples.