摘要:
In a nonvolatile memory cell with charge trapping dielectric (150), the tunnel dielectric (140) includes chlorine adjacent to the charge trapping dielectric but no chlorine (or less chlorine) adjacent to the cell's channel region (120). The chlorine adjacent to the charge trapping dielectric serves to improve the programming and/or erase speed. The low chlorine concentration adjacent to the channel region prevents chlorine from degrading the data retention. Other features are also provided.
摘要:
In a nonvolatile memory cell with charge trapping dielectric (150), the tunnel dielectric (140) includes chlorine adjacent to the charge trapping dielectric but no chlorine (or less chlorine) adjacent to the cell's channel region (120). The chlorine adjacent to the charge trapping dielectric serves to improve the programming and/or erase speed. The low chlorine concentration adjacent to the channel region prevents chlorine from degrading the data retention. Other features are also provided.
摘要:
Isotropic etching of sacrificial oxide that is adjacent to a trench fill step in an STI wafer can lead to undesired etching away of a sidewall of the trench fill material (e.g., HDP oxide). A sidewall protecting method conformably coats the trench fill step and sacrificial oxide with an etch-resistant carbohydrate. In one embodiment, conforming ARC fluid is spun-on and hardened. A selective, dry plasma etches the hardened ARC over the sacrificial oxide while leaving intact part of the ARC that adheres to the trench fill sidewall. The remnant sidewall material defines a protective shroud which delays the subsequent isotropic etchant (e.g., wet HF solution) from immediately reaching the sidewall of the trench fill material. The delay length of the shroud can be controlled by tuning the etchback recipe. In one embodiment, the percent oxygen in an O2 plus Cl2 plasma and/or bias power during the plasma etch is used as a tuning parameter.
摘要:
An OXO-type inter-poly insulator (where X is a high-K metal oxide and O is an insulative oxide) is defined by forming an amorphous metal oxide layer on a silicon-based insulator (e.g., a silicon oxide layer) and then nitridating at least upper and lower sub-layers of the amorphous metal oxide with a low temperature plasma treatment that maintains temperature below the recrystallization temperature of the amorphous material. Such a plasma treatment has been found to improve breakdown voltage characteristics of the insulator. In one embodiment, the metal oxide includes aluminum oxide and it is fluorinated with low temperature plasma prior to nitridation.
摘要:
In integrated circuit fabrication, an etch is used that has a lateral component. For example, the etch may be isotropic. Before the isotropic etch of a layer (160), another etch of the same layer is performed. This other etch can be anisotropic. This etch attacks a portion (160X2) of the layer adjacent to the feature to be formed by the isotropic etch. That portion is entirely or partially removed by the anisotropic etch. Then the isotropic etch mask (420) is formed to extend beyond the feature over the location of the portion subjected to the anisotropic etch. If that portion was removed entirely, then the isotropic etch mask may completely seal off the feature to be formed on the side of that portion, so the lateral etching will not occur. If that portion was removed only partially, then the lateral undercut will be impeded because the passage to the feature under the isotropic etch mask will be narrowed.
摘要:
A method for manufacturing a low temperature removable silicon dioxide hard mask for patterning and etching is provided, wherein tetra-ethyl-ortho-silane (TEOS) is used to deposit a silicon dioxide hard mask.
摘要:
A method for manufacturing a low temperature removable silicon dioxide hard mask for patterning and etching is provided, wherein tetra-ethyl-ortho-silane (TEOS) is used to deposit a silicon dioxide hard mask.
摘要:
A method for manufacturing a low temperature removable silicon dioxide hard mask for patterning and etching is provided, wherein tetra-ethyl-ortho-silane (TEOS) is used to deposit a silicon dioxide hard mask.
摘要:
Nonvolatile memory wordlines (160) are formed as sidewall spacers on sidewalls of control gate structures (280). Each control gate structure may contain floating and control gates (120, 140), or some other elements. Pedestals (340) are formed adjacent to the control gate structures before the conductive layer (160) for the wordlines is deposited. The pedestals will facilitate formation of the contact openings (330.1) that will be etched in an overlying dielectric (310) to form contacts to the wordlines. The pedestals can be dummy structures. A pedestal can physically contact two wordlines.
摘要:
In integrated circuit fabrication, an etch is used that has a lateral component. For example, the etch may be isotropic. Before the isotropic etch of a layer (160), another etch of the same layer is performed. This other etch can be anisotropic. This etch attacks a portion (160X2) of the layer adjacent to the feature to be formed by the isotropic etch. That portion is entirely or partially removed by the anisotropic etch. Then the isotropic etch mask (420) is formed to extend beyond the feature over the location of the portion subjected to the anisotropic etch. If that portion was removed entirely, then the isotropic etch mask may completely seal off the feature to be formed on the side of that portion, so the lateral etching will not occur. If that portion was removed only partially, then the lateral undercut will be impeded because the passage to the feature under the isotropic etch mask will be narrowed.