摘要:
An adaptive hysteresis receiver processes a high speed digital signal. A differential receiver circuit compares the high speed digital signal to a reference voltage to generate an output signal. A register circuit latches the output signal, according to a clock signal, to produce a control signal. A reference voltage generator generates the reference voltage, from a plurality of voltages defining a deep hysteresis level and a shallow hysteresis level, in response to the output signal and the control signal.
摘要:
A system and method provide deglitch filtering. The system has a voltage-based deglitching filter and timing-based deglitching filter. The voltage-based deglitching filter connects with the timing-based deglitch filter, such that the output of the voltage-based deglitch filter connects to the input of the timing-based deglitch filter. The voltage-based deglitch filter is in feedback with the timing based deglitching filter.
摘要:
A method and system for sampling on the fly one or more integrated circuit nodes coupled to one or more bus domain clocks of an integrated circuit using minimal clock cycle delay synchronization. Sample on the fly circuitry, set-reset circuitry and metastable rejection circuitry are used to provide a sufficient pulse width for sampling on the fly the one or more nodes when the one or more bus domain clocks require asynchronous operation. The sample on the fly circuitry is also operable to synchronously sample on the fly the one or more nodes.
摘要:
Methods, systems, and devices are provided for operating a vertical-cavity surface-emitting laser. Operating a vertical-cavity surface-emitting laser can include determining an output voltage of a vertical-cavity surface-emitting laser driver, determining a relationship between the output voltage and a reference voltage, and adjusting an output current of the vertical-cavity surface-emitting laser driver based, at least in part, on the determined relationship.
摘要:
Apparatuses and methods for a self-biased delay looked loop with delay linearization are provided. One example delay locked loop (DU) circuit (100, 200) can include a digital-to-analog converter (DAC) (104, 204, 304) and a bias generator (188, 208) communicatively coupled to an output of the DAC (106, 206, 306). The bias generator (108, 206) is configured to provide a clock signal and a bias signal. A delay control circuit (DCC) (109, 209) is communicatively coupled to the bias generator (108, 208). The DCC (109, 209) is configured to provide a delayed clock signal based on the clock signal and the bias signal. A DAC bias circuit (122, 222, 422) is communicatively coupled to the DAC (106, 206, 306) and configured to provide a feedback signal to the DAC (104, 204, 304) based on the bias signal. The DAC bias circuit (122, 222, 422) configured to adjust the feedback signal to cause the delayed clock signal at the output of the DAC (106, 206, 306) to be non-linear to counteract non-linear delay characteristics of the DCC (109, 209).
摘要:
Methods, systems, and computer-readable media are provided for operating a vertical-cavity surface-emitting laser. Operating a vertical-cavity surface-emitting laser can include sending a signal to a driver to decrease an optical power of a vertical cavity surface emitting laser transmitter, and sending a signal to the driver associated with increasing the optical power by a particular amount in response to determining that the optical power is insufficient for reception by a receiver.
摘要:
Methods, systems, and computer-readable mediah are provided for operating a vertical-cavity surface-emitting laser. Operating a vertical-cavity surface-emitting laser can include sending a signal to a driver to decrease an optical power of a vertical cavity surface emitting laser transmitter, and sending a signal to the driver associated with increasing the optical power by a particular amount in response to determining that the optical power is insufficient for reception by a receiver.
摘要:
Methods, systems, and computer-readable media are provided for operating a vertical cavity surface-emitting laser. Operating a vertical-cavity surface-emitting laser can include receiving an optical signal from a transmitter, converting the optical signal to a waveform, generating a read capture window based on the waveform, sampling data at a first position in the read capture window, sampling data at a second position in the read capture window, and sending a signal to the transmitter to increase a power level of the optical signal in response to a difference between the sampled data at the first position and the sampled data at the second position exceeding a threshold.
摘要:
Systems and methods for synchronizing an input signal with a substantial mitigation of race conditions and a substantial increase in resolving time are provided. One embodiment includes a system comprising a first latching device configured to latch a first output signal from the input signal and a delay element configured to receive the first output signal and output a delay signal that is a delayed version of the first output signal. The system also includes a pass-gate element configured to receive the first output signal and to output a second output signal in response to a logic state of the delay signal. The second output signal has a delayed input edge without a delayed resolving edge. The system can be configured to force the first output signal to a stable logic state in response to the first output signal having a metastable state.
摘要:
Systems and methods for synchronizing an input signal with a substantial mitigation of race conditions and a substantial increase in resolving time are provided. One embodiment includes a system comprising a first latching device configured to latch a first output signal from the input signal and a delay element configured to receive the first output signal and output a delay signal that is a delayed version of the first output signal. The system also includes a pass-gate element configured to receive the first output signal and to output a second output signal in response to a logic state of the delay signal. The second output signal has a delayed input edge without a delayed resolving edge. The system can be configured to force the first output signal to a stable logic state in response to the first output signal having a metastable state.