Abstract:
Provided are heat insulating sheets that may include a resin film having a metal layer and a nonwoven fabric including resin fiber, wherein the resin film and the nonwoven fabric are joined by through holes penetrating the resin film and the nonwoven fabric, and wherein a ratio (La/Lb) of an average distance (La) between the through holes in the resin film to an average distance (Lb) between the through holes in the nonwoven fabric is 1.001 or more and 1.10 or less. Further provided are manufacturing methods of a heat insulating sheet that may include a resin film having a metal layer and a nonwoven fabric including a resin fiber.
Abstract:
It is an object of the present invention to achieve an adhesive composition which enables provision of a cured product having excellent mechanical properties. In order to attain the foregoing object, an adhesive composition in accordance with an embodiment of the present invention contains: a polyoxypropylene-based polymer (A) which has, the terminal thereof, not less than 0.6 (meth)acryloyl groups on average and which has a number average molecular weight of not less than 5,000; a methacrylate compound (B) having a glass transition temperature of higher than 60° C. in a state of a homopolymer; an organic peroxide (C); and a reducing agent (D).
Abstract:
It has been difficult to achieve weight reduction while satisfying a required insulation property in a heat insulating material configured by alternately stacking a metal vapor-deposited sheet and a net. A heat insulating sheet comprises: a first thermal conduction suppressing layer that suppresses thermal conduction; a first radiant heat reflecting layer that is placed on one surface side of the first thermal conduction suppressing layer and reflects radiant heat; and a protruding portion protruding from a surface of the first radiant heat reflecting layer on an opposite side of a surface on which the first thermal conduction suppressing layer is stacked, the protruding portion containing a resin at least on its surface.
Abstract:
Provided are heat insulating sheets that may include a resin film having a metal layer and a nonwoven fabric including resin fiber, wherein the resin film and the nonwoven fabric are joined by through holes penetrating the resin film and the nonwoven fabric, and wherein a ratio (La/Lb) of an average distance (La) between the through holes in the resin film to an average distance (Lb) between the through holes in the nonwoven fabric is 1.001 or more and 1.10 or less. Further provided are manufacturing methods of a heat insulating sheet that may include a resin film having a metal layer and a nonwoven fabric including a resin fiber.
Abstract:
It has been difficult to achieve weight reduction while satisfying a required insulation property in a heat insulating material configured by alternately stacking a metal vapor-deposited sheet and a net. A heat insulating sheet comprises: a first thermal conduction suppressing layer that suppresses thermal conduction; a first radiant heat reflecting layer that is placed on one surface side of the first thermal conduction suppressing layer and reflects radiant heat; and a protruding portion protruding from a surface of the first radiant heat reflecting layer on an opposite side of a surface on which the first thermal conduction suppressing layer is stacked, the protruding portion containing a resin at least on its surface.
Abstract:
In a magnet roller of the magnet piece bonding type, the main pole has a high magnetic flux density and the other pole has an asymmetric magnetic flux density pattern with respect to the magnetic flux density peak position. The magnet piece of the main pole is formed by injection molding while performing pole-anisotropic orientation of magnetic particles of the magnet piece. The magnet piece of the other pole is formed by extrusion molding while orientating the magnetic particles in a certain direction inclined by 5 degrees of more with respect to the center line of the radial direction of the magnet piece. The magnet roller is formed by combining the magnet piece of the main pole and the magnet piece of the other pole.
Abstract:
Polypropylene-based resin extruded expanded particles have a low open cell ratio and are inexpensively obtainable. The polypropylene-based resin extruded expanded particles are obtained by extrusion expansion of a resin composition that contains a polypropylene-based resin (A) which has a branched structure and a polypropylene-based resin (B) in which a branched structure is not introduced. Furthermore, the polypropylene-based resin (B) has a weight average molecular weight of not less than 500,000 and a flexural modulus of not less than 950 MPa.
Abstract:
A process for preparing a magnet roller comprising a plurality of bar-like magnet pieces in a high working efficiency and in an improved adhesion accuracy, which comprises the steps of regulating the bonding position of at least two magnet pieces by their outer peripheral surfaces and their end surfaces, applying an adhesive from the inner surface side of the magnet pieces to the adhesion faces of the magnet pieces for bonding one magnet piece to another magnet piece to form a magnet block, and bonding and fixing the magnet block to a shaft. At least one of the adhesion faces which are in contact with each other may have a plurality of grooves to facilitate penetration of the adhesive into the interface of adjacent two magnet pieces.
Abstract:
Provided are non-halogen, flame-resistant, resin materials and resin magnet materials, and also electron beam controllers comprising the resin magnet materials. The resin material comprises (A) a non-halogen resin composition, (B) a metal oxide hydrate, and (C) one or both of antimony trioxide and zinc borate. The resin magnet material comprises those components (A), (B) and C), and (D) a magnetic material. In the electron beam controller, the four-pole and 6-pole convergence magnets and the two-pole purity controller magnets are made of the resin magnet materials.
Abstract:
A multi-part curable composition includes an A part including a polyoxyalkylene polymer (A) having a reactive silicon group, a (meth)acrylic ester polymer (B) having a reactive silicon group, an epoxy resin curing agent (D) having a tertiary amine moiety, an alicyclic structure-containing amine (E1), and a B part including an epoxy resin (C). Each of the reactive silicon groups of the polymer (A) and polymer (B) are represented by —SiR5cX3-c. R5 is a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms, X is a hydroxy group or a hydrolyzable group, and c is 0 or 1. A multi-part curable composition includes an A part including the polymer (A), polymer (B), and an epoxy resin curing agent (D) having a tertiary amine moiety, and a B part including an epoxy resin (C), where either or both of the A and B parts include an amino alcohol compound (E2).