Abstract:
An energy converter reacts hydrocarbons and air on a catalyst configuration to produce a population inversion. A photovoltaic system may extract the radiating energy, and a laser system may extract a significant fraction of the reaction energy in the form of coherent radiation. The flooding of the catalyst adsorption sites with fuel and the choice of catalyst predisposes the adsorbing oxygen molecules to create mono-atomic oxygen hot-atoms, which deposit the considerable energy of oxygen adsorption directly into a reaction channel of adjacent, adsorbed and simple fuel radicals, thereby producing simple, energetic product molecules, concentrating the energy in one or a few modes, and strongly favoring inverted populations. A solid state method to stimulate precursor chemisorbed specie dissociation accelerates the reaction rates, providing a method to greatly intensify pulsed power output, increase efficiency, and to facilitate nano-scale and micro-scale thermal energy heat rejection processes.
Abstract:
An improved diode energy converter for chemical kinetic electron energy transfer is formed using nanostructures and includes identifiable regions associated with chemical reactions isolated chemically from other regions in the converter, a region associated with an area that forms energy barriers of the desired height, a region associated with tailoring the boundary between semiconductor material and metal materials so that the junction does not tear apart, and a region associated with removing heat from the semiconductor.
Abstract:
A method and system for using a method of pre-equilibrium ballistic charge carrier refraction comprises fabricating one or more solid-state electric generators. The solid-state electric generators include one or more of a chemically energized solid-state electric generator and a thermionic solid-state electric generator. A first material having a first charge carrier effective mass is used in a solid-state junction. A second material having a second charge carrier effective mass greater than the first charge carrier effective mass is used in the solid-state junction. A charge carrier effective mass ratio between the second effective mass and the first effective mass is greater than or equal to two.
Abstract:
An improved diode energy converter for chemical kinetic electron energy transfer is formed using nanostructures and includes identifiable regions associated with chemical reactions isolated chemically from other regions in the converter, a region associated with an area that forms energy barriers of the desired height, a region associated with tailoring the boundary between semiconductor material and metal materials so that the junction does not tear apart, and a region associated with removing heat from the semiconductor.
Abstract:
A method and apparatus to stimulate chemical reactions on a catalyst surface using electricity, and the reverse process to convert energy released from chemical reactions into electricity. A reversible emitter generates electrons which are injected into reactants on the catalyst surface, exciting chemically reactive vibrational resonances. Hot electrons created in the emitter region of a semiconductor junction diffuse to the co-located collector region and catalyst surface. Catalyst clusters or films bonded on the collector surface transfer the hot electrons to or from the catalyst surface having adsorbed reactants. The dimension of the catalyst-collector is less than the energy mean free path of hot electrons. The hot electrons excite reactant vibrations before thermalizing with the substrate lattice thereby accelerating reactions. The hot electrons are also generated by the same reactions on a catalyst surface. The method and apparatus is reversible and may be operated as an electric generator using chemical reactions.
Abstract:
An improved diode energy converter for chemical kinetic electron energy transfer is formed using nanostructures and includes identifiable regions associated with chemical reactions isolated chemically from other regions in the converter, a region associated with an area that forms energy barriers of the desired height, a region associated with tailoring the boundary between semiconductor material and metal materials so that the junction does not tear apart, and a region associated with removing heat from the semiconductor.
Abstract:
A method and apparatus that converts energy provided by a chemical reaction into energy for charging a quantum well device. The disclosed apparatus comprises a catalyst layer that catalyzes a chemical reaction and captures hot electrons and hot phonons generated by the chemical reaction, and an interface layer placed between the catalyst layer and a quantum well. The interface layer facilitates the transfer of hot electrons and hot phonons from the catalyst layer into the quantum well layer. The interface layer can also convert hot electrons into hot phonons, and vice versa, depending upon the needs of the particular quantum well device. Because the hot electrons and the hot phonons are unstable and readily degrade into heat energy, the dimensions of the catalyst layer and the interface layer are very small. To improve the efficiency of the transfer of hot electrons and hot phonons to the quantum well, other interface layers, such as a catalyst interlayer and a catalyst interface, may be utilized.
Abstract:
A method and apparatus that converts energy provided by a chemical reaction into energy for charging a quantum well device. The disclosed apparatus comprises a catalyst layer that catalyzes a chemical reaction and captures hot electrons and hot phonons generated by the chemical reaction, and an interface layer placed between the catalyst layer and a quantum well. The interface layer facilitates the transfer of hot electrons and hot phonons from the catalyst layer into the quantum well layer. The interface layer can also convert hot electrons into hot phonons, and vice versa, depending upon the needs of the particular quantum well device. Because the hot electrons and the hot phonons are unstable and readily degrade into heat energy, the dimensions of the catalyst layer and the interface layer are very small. To improve the efficiency of the transfer of hot electrons and hot phonons to the quantum well, other interface layers, such as a catalyst interlayer and a catalyst interface, may be utilized.
Abstract:
A method and a device for converting energy uses chemical reactions in close proximity to or on a surface to convert a substantial fraction of the available chemical energy of the shorter lived energized products, such as vibrationally excited chemicals and hot electrons, directly into a useful form, such as longer lived charge carriers in a semiconductor. The carriers store the excitation energy in a form that may be converted into other useful forms, such as electricity, nearly monochromatic electromagnetic radiation or carriers for stimulating other surface reactions.
Abstract:
An improved diode energy converter for chemical kinetic electron energy transfer is formed using nanostructures and includes identifiable regions associated with chemical reactions isolated chemically from other regions in the converter, a region associated with an area that forms energy barriers of the desired height, a region associated with tailoring the boundary between semiconductor material and metal materials so that the junction does not tear apart, and a region associated with removing heat from the semiconductor.