Abstract:
A robot system is provided, which includes a paint booth, and a pretreatment robot configured to perform painting pretreatment on a workpiece that is an object to be painted, the pretreatment robot being an explosion-proof robot disposed in the paint booth and including an end effector used for the painting pretreatment.
Abstract:
The disclosure relates to an operating method for a coating system, in particular for a painting system, for coating components (2), in particular motor vehicle body components (2), having the following steps: conveying, by means of a conveying device (3), the components (2) to be coated in a conveying direction through a coating booth (1), coating the components (2) in the coating booth (1) with a coating product by means of an application device (17-19) which applies a spray jet of the coating product, a portion of the applied coating product being deposited on the components (2) to be coated while another portion of the applied coating product floats into the interior of the coating booth (1) as an excess coating product mist (21), and reducing the excess coating product mist (21) from the interior of the booth by means in addition to or other than the downwardly directed air flow generated by a filter ceiling. In addition, the disclosure includes a correspondingly designed coating system.
Abstract:
An installation for surface treating, in particular painting, objects, in particular vehicle body parts, having a treatment booth which defines a treatment space in which a booth atmosphere prevails. The objects can be transported into the treatment space and out of it again by means of a transport system. Treatment of the objects in the treatment space can be carried out by means of at least one treatment unit which requires a process gas for the operation. The process gas can be supplied to the at least one treatment unit by means of a supply device, wherein the process gas arrives in the treatment space during the treatment procedure and thus contributes to the booth atmosphere. A separating system is provided, to which booth atmosphere can be supplied and by means of which process gas can be separated from the booth atmosphere. A corresponding process is moreover disclosed.
Abstract:
A powder spray for lengthy parts includes a booth wall structure comprised primarily of doors. A moveable roof may be raised and lowered to clean powder overspray from the interior surfaces of the booth. A cleaning process may be performed with a sideways extraction mode and a downward extraction mode. The mode change occurs when a bulkhead that travels with the moveable roof blocks the inlet duct to the recovery system. The recovery system may be a cyclone system for example. The doors of the booth are hinged so that they can be positioned for spraying operations and cleaning operations. Live hinge designs are provided and hose stress relief designs are also provided. The roof may carry accumulators for pressurized air that feed cleaning nozzles as the roof descends. In addition, exhaust air may be used to assist cleaning the interior surfaces as the roof descends. All of the energy provided for cleaning and color change may be provided by accumulators.
Abstract:
The invention relates to a screen insert (70) for a powder container (24) of a powder supplying device, the screen insert (70) having a screen unit (71) for screening coating powder and an ultrasonic transducer (72) for generating ultrasonic vibrations. The screen unit (71) is connected to the ultrasonic transducer (72) in such a way that the ultrasonic vibrations generated by the ultrasonic transducer (72) can be transferred to the screen unit (71). To allow a particularly compact construction of the screen insert (70) to be achieved, according to the invention a screen carrier (73) which can be placed onto the powder container (24) is provided, for holding the ultrasonic transducer (72), with the screen unit (71) connected thereto, in such a way that the screen unit (71) is arranged below the screen carrier (73), so that the screen unit (71) is inside a powder chamber (22), formed by the powder container (24), when the screen carrier (73) has been placed onto the powder container (24).
Abstract:
A coating device includes a main body, a transport device, at least one loader, a driving device. The main body has a top plate, a bottom plate, and a pair of sidewalls connecting the top plate and bottom plate. The sidewalls respectively define an input gate and an output gate. The transport device includes a transport track passing through the input gate and the output gate, and at least one lifting arm mounted on the transport track. Each loader is configured for loading workpieces and includes a rotary shaft, at least one loading frame rotatably connected with the rotary shaft. The driving device is mounted on the top plate. Each lifting arm is configured for clamping a corresponding loader and transporting the corresponding loader to engage with the driving device. The driving device rotates the corresponding loader rotary shaftthrough the rotary shaft of the corresponding loader.
Abstract:
A system and method for applying a material for improving the adhesion between the surface of thermoplastic polyolefin (TPO) elements and a coating applied thereto is disclosed. The system comprises the mixing of an adhesion promoter with de-ionized water and applying it to the surface of the TPO elements to be coated. Preferably, the application occurs in an atmospherically controlled enclosure. The application of the adhesion promoter is preferably accomplished by flowing the mixture over the TPO elements through an application device that minimizes agitation and splashing of the mixture. Multiple parameters of the application system may be monitored and regulated. Upon completion of the application process, the treated TPO elements are preferably dried in an oven, leaving a thin layer of adhesion promoter over the surface thereof. Use of the application device ensures that minimal defects are present in the dried adhesion promoter layer.
Abstract:
An efficient coating machine capable of hardening coating on works in a short hardening time with a small-sized hardening oven at reduced costs. The coating machine has a painting booth, a hardening oven and a work transfer device. The work transfer device has a rotary shaft provided at a center of the coating machine, and a plurality of hangers, each holding one piece of work and being turnable about the rotary shaft. The painting booth and the hardening oven are arranged around the rotary shaft into an arc-shaped configuration, respectively. The hardening oven has an arc-shaped work passage adapted to move the works. One piece of work is coated in the painting booth and continuously transferred to the work passage of the hardening oven while being held with each of the hangers and turned about the rotary shaft. In the work passage, the work is blown with hot air fed from a hot air generating device for hardening the coating on the work.
Abstract:
A powder coating booth containment structure including first and second canopy halves, each of which is a substantially nonconductive, seamless, structural composite to substantially reduce oversprayed powder particle adhesion to the booth inner surfaces. The composite canopy halves, when assembled into a spray booth additionally including either a floor or a utility base and one or a pair of end units in the form of aperture bulkheads, vestibules, or a combination of both, are structurally sufficiently strong that no external support frame is required. The composite canopy halves can each include sidewall and ceiling portions, in an embodiment, that can be connected to a floor. In another embodiment, the canopy halves each additionally include a floor portion such that they may be connected together at a floor edge and placed atop a utility base. They may be connected to the utility base. In another embodiment, the canopy halves may each further include an integral end or ends, comprising aperture bulkhead or vestibule-type end portions. Methods of assembling these embodiments are also provided that require less time than for known powder coating spray booth assembly.
Abstract:
A powder coating booth containment structure including first and second canopy halves, each of which is a substantially nonconductive, seamless, structural composite to substantially reduce oversprayed powder particle adhesion to the booth inner surfaces. The composite canopy halves, when assembled into a spray booth additionally including either a floor or a utility base and one or a pair of end units in the form of aperture bulkheads, vestibules, or a combination of both, are structurally sufficiently strong that no external support frame is required. The composite canopy halves can each include sidewall and ceiling portions, in an embodiment, that can be connected to a floor. In another embodiment, the canopy halves each additionally include a floor portion such that they may be connected together at a floor edge and placed atop a utility base. They may be connected to the utility base. In another embodiment, the canopy halves may each further include an integral end or ends, comprising aperture bulkhead or vestibule-type end portions. Methods of assembling these embodiments are also provided that require less time than for known powder coating spray booth assembly. In another embodiment, a conductive material is incorporated into the composite structure to bleed off charge or repel like charged particles generated during or after a spraying operation.