Abstract:
When the tracking point reaches the i-th stand, the continuous rolling system outputs, to an i-th stand, a roll gap operation value for bringing to zero a difference between a value which is obtained by correcting a strip thickness target value of the i-th stand with a target strip thickness correction value of the i-th stand and a value which is obtained by correcting a strip thickness actual recalculation value of the i-th stand with a gap correction value of the i-th stand. Here, the gap correction value is a correction value that brings to zero a difference between a head end gap error when a head end of the material to be rolled reaches the i-th stand and a non-head end gap error when a part other than the head end of the material to be rolled reaches the i-th stand.
Abstract:
Method for the production of flat metal products, in particular coils of strip, in endless and/or semi-endless mode, in which a metal product is continuously fed to a rolling mill consisting overall of at least 4 stands. The rolling stands are, in sequence, roughing stands, and finishing stands. It is provided to perform a flying gauge change of the metal product exiting from the rolling mill.
Abstract:
A method of controlling a roll gap between first and second work rolls (102, 104) that includes defining a plurality of work surface locations spaced apart along the first work roll (102) in the longitudinal direction; obtaining a radius of the work surface (102a) of the first work roll (102) at each of the work surface locations; based on the radii of the work surface locations, obtaining a longitudinal profile of the work surface (102a); based on the longitudinal profile, tilting the first work roll (102) relative to the second work roll (104) in the common plane in order to reduce a difference in the average size of the gap either side of a centerline (CL), which bisects the longitudinal axes of the first and second work rolls (102, 104).
Abstract:
A method for changing rollers in a roll stand adapted for bearing at least one working roller for a continuously-running steel-strip roll mill, includes providing the stand as part of a plurality of roll stands disposed in series along the roll mill in a continuous running direction. A rolling standby function in a free clamping position of the roller(s) is allocated to at least one dedicated stand among the plurality of stands. Original setpoint values controlling an adjustment of the roller clamping are individually allocated to the other stands in an active rolling position. In the case of a roller change when passing into the free clamping position of the stand, the original setpoint value of the stand and the original setpoint values of the stands remaining in an active rolling position are redistributed individually among each of the stands, including the dedicated stand.
Abstract:
A roll mill for rolling a product has a roll stand with working rolls and a control device. The product has a head part and is moved towards the stand at a product head part speed. The working rolls form a rolling gap. The control device controls the stand such that, before the product head part enters the gap, the rolls are rotated at a peripheral speed which is essentially the same as the product head part speed; the gap is vertically adjusted to essentially a product head part thickness, on the feeding side, before the product enters the gap; and, during or following the insertion of the product into the gap, the gap is closed to a pre-determined value, and the peripheral speed of the working rolls is modified, especially increased, according to the gap, essentially at the same time as the closing of the gap.
Abstract:
The invention relates to an apparatus for rolling a strip (21) comprising a first work roll (24), which is mounted from both ends with bearings (35) to the mill frame, a second work roll (25), which work rolls (24, 25) are forming a nip (26) in between them, one or more ring(s) (19, 20) closing inside at least one of the work rolls (24, 25), at least first intermediate roll (27, 39) mounted to the mill frame from both ends with bearings (36) and arranged in rolling contact between the second work roll (25) and inside surface (22) of the ring(s) (19, 20). The invention also relates to the method of producing a thin strip.
Abstract:
A roll support frame without housing for pairs of rolls is supported on two sides in bearing chocks, wherein the roll support frame can be moved into and out of a unilaterally open housing which contains the drive transmission and adjusting devices for the rolls. The roll support frame is composed of a box-shaped element with entry and exit passages, guides for the rolling stock and support and guide elements arranged at the box-shaped element for the bearing chock pairs of each of the two rolls.
Abstract:
Method and apparatus for measuring the nip clearance between two rolls rotating close to each other. First and second members are non-rotatably mounted on opposite sides of the nip. Each member has a pair of wheels mounted so that one wheel rotates in contact with only one roll and the other wheel rotates in contact with only the other roll. The nip clearance is a function of the distance between the two members.
Abstract:
In order to be able to determine the rolling or guiding gaps of the roll stands or guide stands in a multi-stand rolling mill, at a predetermined measurement precision, with the least possible effort, a master calibration and intermediate calibrations are carried out, wherein various calibration measures are refrained from, in a targeted manner. The targeted lack of recourse in the case of specific calibrations is also independently advantageous.
Abstract:
A current temperature is ascertained for sections of a strip ahead of a first mill stand. The temperatures of the strip sections are predicted with a prediction horizon corresponding to multiple strip sections, including when each strip section is milled in the first mill stand for which time a nip profile formed by the working rolls is predicted. A control parameter for milling a specific strip section in the first mill stand is ascertained for controlling a control device of the first mill stand. A manipulated variable curve for the control device, influencing the nip profile of a nip formed by working rolls of the first mill stand, is set for the prediction horizon and optimized for the predicted nip profile and a desired profile. The current value of the optimized manipulated variable curve corresponds to the control parameter which is fed to the control device as the manipulated variable.