Abstract:
Positions of both end edges of a weld bead in a bead width direction are measured over the entire circumference of a liner in a circumferential direction of the liner. Based on information on the position of the end edge, bead profile information being information on a shape of the end edge of the weld bead over the entire circumference of the liner in the circumferential direction is created. Based on this bead profile information, machining information of the liner per rotation of the liner being position information of a cutting tool in the bead width direction per phase in the circumferential direction of the liner is created so that a moving locus of the cutting tool relative to the liner along the circumferential direction of the liner approximates the shape of the end edge of the weld bead over the entire circumference of the liner in the circumferential direction.
Abstract:
A method for producing a steel tube, wherein a steel sheet is formed into tubular body having a round cross section in a bending process, welded in a subsequent welding process along longitudinal edges facing each other for producing a continuous longitudinal seam, and then subjected to a stress-relieving treatment. The production quality is improved, with reduced production time, because the stress-relieving treatment is performed in a process for concentrically truing along the circumference in at least one segment relative to the longitudinal axis thereof, while cold forming by compression (FIG. 1). The mechanical technological properties of the material are also thereby improved.
Abstract:
The invention relates to a method for producing a steel tube, wherein a steel sheet (4) is formed into tubular body (1.2) having a round cross section in a bending process (a), welded in a subsequent welding process (b) along the longitudinal edges facing each other for producing a continuous longitudinal seam, and then subjected to a stress-relieving treatment. The production quality is improved, with reduced production time, in that the stress-relieving treatment is performed in a process (c) for concentrically truing along the circumference in at least one segment relative to the longitudinal axis thereof, while cold forming by compression (FIG. 1). The mechanical technological properties of the material are also thereby improved.
Abstract:
A method of fabricating a condenser tube having a pre-determined tube length and multiple channels including the steps of forming an aperture in a flat strip of metal; moving the flat strip through a plurality of forming operations to fold into an enclosed tube containing channels, which channels include the aperture in their sides and bottoms; and severing the enclosed tube across the aperture to separate the enclosed tube into one condenser tube. The aperture eliminates the need for the channel sides to be severed, hence only the portion of the condenser tube enclosing the channels requires severing. Each pair of apertures is spaced from the next pair of apertures by the pre-determined tube length so that each sever produces one condensing tube of the pre-determined tube length with the apertures being divided into open notches. The invention also includes a heat exchanger utilizing the condenser tube with channel sides containing portions of the apertures.
Abstract:
A method of fabricating a condenser tube having a pre-determined tube length and multiple channels including the steps of forming an aperture in a flat strip of metal; moving the flat strip through a plurality of forming operations to fold into an enclosed tube containing channels, which channels include the aperture in their sides and bottoms; and severing the enclosed tube across the aperture to separate the enclosed tube into one condenser tube. The aperture eliminates the need for the channel sides to be severed, hence only the portion of the condenser tube enclosing the channels requires severing. Each pair of apertures is spaced from the next pair of apertures by the pre-determined tube length so that each sever produces one condensing tube of the pre-determined tube length with the apertures being divided into open notches. The invention also includes a heat exchanger utilizing the condenser tube with channel sides containing portions of the apertures.
Abstract:
The present invention relates to an apparatus for mass production of metal substrates used in catalytic purification of exhaust gas, which comprises: (a) an uncoiler part for continuously feeding a strip in the lengthwise direction, wherein said strip is coiled along the rotation axis; (b) a tubing processing part for changing the strip into the shape of a pipe by means of gradually putting pressure through multi-stage rolls onto the both side edges of the strip in feed from said uncoiler part; (c) a feeder part, which is installed at one side of said tubing processing part, for feeding a pre-made honeycomb body at an equal interval to the strip being changed into the shape of a pipe; (d) a welding part, which is installed at the rear end of said tubing processing part, for welding into a unit the both side edges of the strip in feed after being changed into the shape of a pipe; (e) a sizing part, which is installed at the rear end of said welding part, for evening the girth of the pipe in feed; and (f) a cutting part for cutting the pipe in feed from said sizing part into equal intervals.
Abstract:
An apparatus includes a scoring device for making transverse score lines on a roll of sheet material, a dimpler device or dimpler roller for making dimples adjacent the score lines at predetermined width locations, and a rollformer adapted to continuously form the sheet material into a tubular shape with channels. A welder is positioned in line with the rollformer and is adapted to weld the tubular shape into a permanent tube. A break off device positioned in line with the rollformer is adapted to break off sections of the tube at the score lines as the permanent tube exits the rollformer. The dimpler device is adapted to form an “in” dimple and an “out” dimple at locations coordinated with the score lines and with a width of the sheet material so that the “out” dimple forms a stop configured to slip into a channel formed in the sheet material by the rollformer but that abuts the “in” dimple which is formed at an end of the channel.
Abstract:
A method includes providing an apparatus that includes a scoring device for making transverse score lines on a roll of sheet material, a dimpler device or dimpler roller for making dimples adjacent the score lines at predetermined width locations, and a rollformer adapted to continuously form the sheet material into a tubular shape with channels. A welder is positioned in line with the rollformer and is adapted to weld the tubular shape into a permanent tube. A break off device positioned in line with the rollformer is adapted to break off sections of the tube at the score lines as the permanent tube exits the rollformer. The dimpler device is adapted to form an nullinnull dimple and an nulloutnull dimple at locations coordinated with the score lines and with a width of the sheet material so that the nulloutnull dimple forms a stop configured to slip into a channel formed in the sheet material by the rollformer but that abuts the nullinnull dimple which is formed at an end of the channel.
Abstract:
The method of forming a seamed metal tube having a metal coating of this invention includes galvanizing the strip prior to welding. The strip is then formed into an open seam tube and welded in an inert atmosphere with the seam located in the lower portion of the tube. Finally, the metal coating is caused to flow downwardly over the seam, coating the seam by several means. In one embodiment, the strip is preformed into an arcuate shape and galvanized, wherein the zinc coating in creases in thickness toward the lateral strip edges, such that the coating will flow over the seam following welding. The tube may also be reheated following welding, preferably in an enclosure containing an inert atmosphere which includes the weld apparatus. In an other embodiment, an inert gas is directed over the inner and outer surfaces of the tube, adjacent the seam, driving the molten metal downwardly over the seam to coat the seam. In another embodiment, the lateral edges of the strip are formed with indentions or grooves directed toward the lateral edges which direct the molten metal downwardly over the seam.
Abstract:
A roll forming process utilizes as a feedstock hot rolled steel strip (1) and during the roll forming process the surface of the steel strip (1) is cleaned and polished by the combined effects of deformation and frictional contact between the surface of the strip (1) and the mill rollers. The initial deformation step (9) is carried out in the presence of a conventional rolling mill lubricant/coolant and the final rolling stage (10) is carried out in the presence of a detergent composition which serves to remove any residual lubricant and particles of mill scale and at the same time act as a lubricant/coolant for the rolling mill (8) at the final stage (10). The process enables subsequent on-line painting (13) of the roll formed product (12) at high line speeds.