Abstract:
This invention relates generally to a method for repairing a casting, and more specifically to a method of repairing a casting by pouring melted filler material into a damaged portion of the original casting. Damaged cast metal components, such as a cylinder head of an internal combustion engine are repaired by preheating the component to a first preheat temperature. The damaged area of the casting is then heated to a higher temperature using a torch and melted filler material is poured into the casting. The torch is used to maintain the temperature of the melted material for thirty seconds to two minutes. The temperature of the filler material is then cooled using compressed air.
Abstract:
In the present invention are disclosed a hollow steel pile having an open extremity end with a helical projection composed of a round rod or rectangular rod of its height less than 20 mm arranged at an outer circumference of the pile or at both outer circumference of the pile and inner circumference of the pile at a length part less than ten times of s diameter of the pile, a method for fixing the inner circumferential projection and a pile execution method using such a pile as above. This hollow steel pile may preferably be used as a friction pile and a supporting pile, no vibration and noise are found during its execution of work, a better workalility is assured, a cost of execution of work is less expensive and this process is suitable for performing in a narrow site.
Abstract:
A method of forming an earth-boring tool includes forming a tool body including at least one inverted cutting element pocket, at least a portion of the at least one inverted cutting element pocket having a profile substantially matching a profile of an actual cutting element to be secured within a cutting element pocket to be formed by subsequently machining the at least one inverted cutting element pocket. Hardfacing material may be applied to portions of the tool body. The actual cutting element pocket is formed by removing material of the tool body within the at least one inverted cutting element pocket subsequent to applying the hardfacing material to portions of the tool body. A cutting element is affixed within the actual cutting element pocket.
Abstract:
A method of forming an earth-boring tool includes forming a tool body including at least one inverted cutting element pocket, at least a portion of the at least one inverted cutting element pocket having a profile substantially matching a profile of an actual cutting element to be secured within a cutting element pocket to be formed by subsequently machining the at least one inverted cutting element pocket. Hardfacing material may be applied to portions of the tool body. The actual cutting element pocket is formed by removing material of the tool body within the at least one inverted cutting element pocket subsequent to applying the hardfacing material to portions of the tool body. A cutting element is affixed within the actual cutting element pocket.
Abstract:
A method of repairing a metallic component is disclosed. The method may include machining away a damaged first portion of the component, and machining away a second portion of the component adjacent the damaged first portion, the second portion being an area that would be subject to distortion resulting from solidification of molten weld material added to repair the damaged first portion. The method may also include inserting a dam made of a high-temperature-resistant material adjacent the machined away second portion to contain molten weld material added to the machined away second portion. Oxy-fuel welding may be performed to at least partially fill the machined away damaged first portion of the component and the machined away second portion of the component, and final machining of the welded portions may be performed.
Abstract:
Methods for joining material to an article comprising one or more passageways include fluidly connecting a temperature controlled fluid source comprising temperature controlled fluid to at least one passageway and passing the temperature controlled fluid through the at least one passageway, wherein the temperature controlled fluid at least partially controls a temperature profile of the article. The methods further include joining material to the article, wherein the temperature profile of the article at least partially controls a resulting joined material characteristic.
Abstract:
A method for repairing a turbine blade is described. The turbine blade usually includes a root portion; an airfoil having a pressure sidewall and a suction sidewall; and a tip disposed between the two sidewalls. The method includes the steps of removing substantially all of an upper region of the tip, and then rebuilding only a portion of the upper tip region. The portion that is rebuilt generally extends from the suction sidewall. Another embodiment is directed to a method for repairing or modifying a turbine blade that includes a squealer rim extending above both a pressure sidewall and a suction sidewall of the airfoil. The squealer rim portion that extends from the pressure sidewall is removed, while leaving in place the squealer rim portion that extends from the suction sidewall.