摘要:
An ink supply system (10) comprises an ink chamber (12); an ink line (14) with a Venturi nozzle (16), wherein the ink chamber (12) has an inlet (18), which is connected to the ink line (14) upstream of the Venturi nozzle (16), and an outlet (24), which is connected to the suction side of the Venturi nozzle (16); an ink reservoir (30) from which the ink is transferred by a pump (28) to the inlet (18) and into the ink line (32); and an ink return line (32), which connects the downstream end of the Venturi nozzle (16) with the ink reservoir (30).
摘要:
This document discloses a system to dispense a precise and continuous amount of ink for a large printing press. The dispensing system can be judiciously combined into a more elaborate dispensing system that uses two chambers with ink having a different density to dispense ink with a precise, adjustable and stable ink density. The dispensing system can be used to compensate the drifts in quality observed in presses when the speed, or any environmentable parameters vary.
摘要:
A formative surface having a conductive base covered with a dielectric and oleophobic/hydrophobic surface layer is created with defined pits to grow micro-puddles of a defined volume. The formative surface is brought into close proximity with a charge retentive surface carrying a charge image. Fountain solution vapor nucleates and grows preferentially on the base of the pits as micro-puddle droplets. The puddles are charged and extracted from the surface to provide a fog of charged droplets of narrow volume and charge distribution. The charged droplets are attracted and repelled respectively from the charged and discharged image regions of the charge retentive surface, thus developing the charged image into a fountain solution latent image. The developed latent image is then brought into contact with a transfer member blanket and split, thus creating on the blanket a fountain solution latent image ready for inking.
摘要:
The present subject matter describes a system for pumping ink. In an example implementation, the system includes a piston assembly having a lower chamber and an upper chamber. The lower chamber has an inlet port to receive ink. The upper chamber has a passage to receive ink from the lower chamber and an outlet port to dispense ink. The upper chamber is enclosed by a bellow. An actuating member is engaged with the piston assembly. The actuating member is configured to linearly move the piston assembly. The piston assembly is configured to compress and relax the bellow by the linear movement to pump ink from the lower chamber to the upper chamber and from the upper chamber to the outlet port.
摘要:
The invention relates to an ink circuit of an inking unit of a flexographic or gravure printing press. In order to reduce the changeover costs in relation to the ink circuit of an inking unit of a flexographic or gravure printing press, an ink circuit of an inking unit of a flexographic or gravure printing press is provided, wherein the inking unit has an ink inflow for providing ink which is ready for printing and an ink outflow for transporting away excess ink, wherein the ink inflow is operated by an inflow pump and the ink outflow is operated by an outflow pump, and wherein the outflow pump is a pump which is driven by an electric motor.
摘要:
The present subject matter describes a system for pumping ink. In an example implementation, the system includes a piston assembly having a lower chamber and an upper chamber. The lower chamber has an inlet port to receive ink. The upper chamber has a passage to receive ink from the lower chamber and an outlet port to dispense ink. The upper chamber is enclosed by a bellow. An actuating member is engaged with the piston assembly. The actuating member is configured to linearly move the piston assembly. The piston assembly is configured to compress and relax the bellow by the linear movement to pump ink from the lower chamber to the upper chamber and from the upper chamber to the outlet port.
摘要:
A method for regulating the flow of a viscosity-dependent liquid in a graphic process, including a pump (5) configured for pumping a viscosity-dependent liquid (3) from a first container (4) and to a graphic printing machine (1), and wherein the viscosity of the liquid (3) affects operation of the pump (5), a sensor (8) connected with the pump (5) and which is configured to measure at least one of the operational parameters of the pump (5), and a controller (9) connected with the sensor (8) and which is configured to analyze the data from the sensor (8). The controller (9) determines the viscosity of the liquid (3) from the measured operational parameters of the pump (5) and generates a control signal (17) from the measured viscosity, based on which the viscosity of the liquid (3) pumped through the pump (5) can be adjusted.
摘要:
A flexographic ink printing machine is provided in which ink is circulated in order to prevent solidifying of the ink during a printing operation, whereby during ink supplying or ink recovering operations, high efficiency of supplying and recovering the ink can be obtained. A printing machine which includes an ink reservoir, an ink supply source, and ink delivery tubings each connecting said ink reservoir to said ink supply source, whereby the ink supplied from said ink supply source via at least one of said ink delivery tubings to said ink reservoir and accumulated therein is used for printing, said ink delivery tubings including ink recovery tubings for recovering the flexographic ink from said ink reservoir to said ink supply source, said ink recovery tubings having their ink recovery opening ends located within said ink reservoir, said ink delivery tubings including ink supply tubing for supplying the flexographic ink from said ink supply source to said ink reservoir, said ink supply tubing having its ink supply opening end located within said ink reservoir, whereby the ink within said ink reservoir is maintained in a dynamic state by supplying said flexographic ink from said ink supply source to said ink reservoir via said ink supply tubing and by recovering the flexographic ink from said ink reservoir to said ink supply source via said ink recovery tubings during the printing operation of the printing machine, wherein: said ink recovery tubings and said ink supply tubing have ink transfer means which can transfer the ink in both forward and backward directions between said ink supply source and said ink reservoir, wherein the flexographic ink is recovered from said ink reservoir to said ink supply source via said ink recovery tubings and said ink supply tubing now being used as an ink recovery tubing during ink recovering, and wherein the flexographic ink is supplied from said ink supply source to said ink reservoir via said ink supply tubing and said ink recovery tubings now being used as ink supply tubings during ink supplying.
摘要:
A method and system for enabling user interaction with computer software running in a computer system. The user is provided with an interface surface containing information relating to the computer software and including coded data indicative of at least one interactive element relating to the computer software. A sensing device in the form of an optically sensing stylus contains identifying data indicative of an identity of the user. When the user writes with the stylus, or uses it as a pointer, an operative end of the stylus is brought into contact with the interface surface. The sensing device senses indicating data indicative of the at least one interactive element using at least some of the coded data. The computer system receives the identifying data and the indicating data from the sensing device. The interactive element is identified in the computer system using the indicating data, and user data is identified using the identifying data. The computer software is operated at least partly in reliance on the user data, and in accordance with instructions associated with the at least one interactive element.
摘要:
It is intended to prevent ink from leaking through the ink outlet of the ink rail while the printing press is at halt. To achieve this object, a motor control section 40 shown in FIG. 4 controls the rotation of a stepping motor 15 driving a plunger 13 and, every time the stepping motor 15 is stopped, the outer circumference 13c of the plunger 13 except a cut portion 13a blocks at least a discharge port 18, thereby enabling the pressure ink invading from an intake port 17 into the main hole 11 of a cylinder 12 to press the plunger 13 against the discharge port 18 opening into the inner circumferential face of the main hole 11.