Abstract:
A vehicle-height adjusting system includes: vehicle-height adjusting actuators each for adjusting a vehicle height for a corresponding one of wheels; a pressure medium supplier for supplying a pressure medium from a tank to each of the vehicle-height adjusting actuators; and a vehicle height adjuster for adjusting the vehicle height for each wheel. The vehicle-height adjusting actuators include a left vehicle-height adjusting actuator and a right vehicle-height adjusting actuator. The vehicle height adjuster includes a supply amount controller configured to control the pressure medium supplier such that substantially the same amount of the pressure medium is to be supplied from the tank to the left vehicle-height adjusting actuator and the right vehicle-height adjusting actuator, when at least one of the wheels is in contact with an uneven road surface.
Abstract:
There is provided a vehicle abnormality detection method detecting an abnormal state in which a high temperature occurs due to maladjustment of a vehicle bearing mechanism section or vehicle brake mechanism section, and a device thereof and a sensor unit thereof. By use of the sensor unit 100 mounted in a rim 31, an air temperature within a tire 2 is sensed as a first temperature and a temperature (second temperature) of the rim 31 is sensed as a temperature related to at least one of a temperature of the vehicle bearing mechanism section and a temperature of the vehicle brake mechanism section 40. Then a temperature difference between the first and second temperatures is calculated and when the temperature difference is a predetermined value or more, it is determined that an abnormality has occurred in the vehicle bearing mechanism section or vehicle brake mechanism section 40. The abnormality is thus detected.
Abstract:
This invention provides a monitoring system to control liftable or steer axles on a truck or tractor-trailer by monitoring one or more input data types selected from the group consisting of speed and direction data, load data, turn signal data, engine data and emergency signal data. After processing the input data, a control module may control the lift axle electrical valving to lift one or more liftable axles, and may also lock the steerable axle in a straight position at a predetermined forward speed or adjust the pressure on the air suspension of a steer axle to equalize axle bearing weight.
Abstract:
A method for controlling or regulating a compressor 4 that can be switched on and off on demand, wherein a control unit 6 that switches the compressor 4 on and off is provided with the compressor. In a method of this type, it must be ensured that the compressor 4 is not damaged due to overheating. This is attained due to the fact that the control unit 6 operates the compressor 4 continuously during a regulating process until a limiting value is reached, and that said control unit operates the compressor in a cyclic manner once the limiting value is reached. This method makes it possible to complete regulating processes even if a critical limiting value is already reached.
Abstract:
An apparatus for controlling an active suspension system for an automotive vehicle comprises hydraulic suspensions, control valves for independently controlling each of the suspensions and a controller for issuing a signal for controlling of opening/closing of the respective control valves. The apparatus includes a longitudinal g sensor for detecting a longitudinal acceleration of a vehicle body and a lateral g sensor for detecting a lateral acceleration of the vehicle. To calculate a control quantity relative to feeding of hydraulic fluid in and discharging of the hydraulic fluid from the respective suspensions required for suppressing pitching and rolling of the vehicle body, the apparatus further includes a control logic which in the controller. A control quantity derived from the circuits is added to another control quantity derived from a vertical g acceleration sensor and a vertical relative displacement sensor, and the resultant control quantity is delivered to the control valve for each suspension.
Abstract:
Systems and methods for stabilizing a vehicle during a traction control event are disclosed. Signals indicative of wheel speed and velocity of the vehicle may be received at a controller of the vehicle and compared to determine wheel slip. Based on the wheel slip, the controller determines whether a burnout condition exists. A damping force of at least one damper associated with a suspension of the vehicle may be adjusted when a burnout condition is detected.
Abstract:
There is provided a vehicle abnormality detection method detecting an abnormal state in which a high temperature occurs due to maladjustment of a vehicle bearing mechanism section or vehicle brake mechanism section, and a device thereof and a sensor unit thereof. By use of the sensor unit 100 mounted in a rim 31, an air temperature within a tire 2 is sensed as a first temperature and a temperature (second temperature) of the rim 31 is sensed as a temperature related to at least one of a temperature of the vehicle bearing mechanism section and a temperature of the vehicle brake mechanism section 40. Then a temperature difference between the first and second temperatures is calculated and when the temperature difference is a predetermined value or more, it is determined that an abnormality has occurred in the vehicle bearing mechanism section or vehicle brake mechanism section 40. The abnormality is thus detected.
Abstract:
It is possible to prevent generation of failure in a dump truck and to diagnose a true cause of failure in a short period of time. Thus the present failure diagnosis method diagnoses an operation and function of at least one of respective devices, such as an engine at a predetermined engine rotational speed, a transmission, respective axles, respective suspensions, hydro-pneumatic systems, and a brake while a vessel body (4) descends after evacuation of a load. The failure diagnosis device comprises body operating means (50) for raising or lowering a vessel body, a direction switching valve (7) for receiving a command from the body operating means to lower the vessel body, and a self-diagnosis control device (11) for using state detecting means (20) to detect and store a state of at least one of the respective devices at a predetermined engine rotational speed when the body operating means is at a predetermined operative position and for comparing a magnitude of a detected value and a rate of change with reference values on the basis of hysteresis data when carrying out failure diagnosis.
Abstract:
A vehicle suspension system may include hydraulic actuators, first and second conduits, and first and second switch valves. Each actuator includes a cylinder and a piston that divides an interior of the cylinder into compression and rebound chambers. First and third ports of each cylinder are openings to the rebound chamber. Second and fourth ports of each cylinder are openings to the compression chamber. The first conduit connects the third port of a first actuator with the fourth port of a second actuator. The second conduit fluidly connects the third port of the second actuator with the fourth port of the first actuator. The first switch valve is connected to the first and second ports of the first one of the hydraulic actuators. The second switch valve is connected to the first and second ports of the second one of the hydraulic actuators.
Abstract:
A method for controlling an electrically driven compressor, which can be switched on and off as a function of demand, of a pneumatic suspension system, wherein the temperature of the compressor is calculated according to a temperature model inside a control device, and the compressor is switched on or off as a function of the calculated temperature, wherein, for the calculation of the temperature of the compressor according to the temperature model, the control device takes into account the air pressure surrounding the vehicle as an input variable, and the parameters of the temperature model are adapted as a function of this air pressure.