摘要:
The present invention relates to a method for measuring a vertical acceleration and a velocity of a semi-active suspension system. Particularly, the present invention provides a method for obtaining a vertical acceleration from vertical accelerations measured from three vertical acceleration sensors of a semi-active suspension system of a vehicle, comprising the steps of: receiving first to third vertical accelerations measured from first to third vertical acceleration sensors; and obtaining a fourth vertical acceleration (Ad) by multiplying the first to third vertical accelerations by correction constants and subsequently summing up them. Therefore, according to the present invention, a fourth vertical acceleration can be obtained by multiplying the three vertical accelerations measured from the three acceleration sensors by the constants for correcting them to accelerations at actually desired damper positions and subsequently summing up them, thereby enabling accurate measurement and correction of the vertical accelerations.
摘要:
Disclosed herein is a system and method for computer assisted driving of vehicles. The system disclosed herein provides an array of sensors positioned in the vehicles at strategic points for capturing vibrations and sound induced, when the vehicles move over pavement surfaces marked with predefined patterns of peaks and troughs. The sensors further measure frequencies of these vibrations. An onboard computer on the vehicle matches the captured frequencies and sound against pre-specified frequencies to obtain unique frequency signatures for the segment of the pavement traversed by the vehicle. Navigational data and geographical data associated with the unique frequency signature are used to provide assistance in driving of vehicles.
摘要:
Basing on signals (Vi) representing the vertical movements of the vehicle body at selected points (Pi) of the body, and basing on second signals (Xarvl', Xarvr', Xarhl', Xarhr') representing the relative movements between the wheel units and the body of the vehicle, the inventional system infers selected components of movement of the vehicle body, such as heave, roll and pitch movements or the vertical movement of the body at the front and rear axles as well as the roll movement. These components of movement are weighted differently. Basing on these differently weighted components of movement, second body movements are inferred at the points where the wheel suspension systems attach to the body. By comparison of the second body movements (Vagvl, Vagvr, Vaghl, Vaghr) to the pertaining relative movements between the wheel units and the body there are actuation signals formed for the respective suspension system, in a way such that the selected components of movement can be influenced separately from one another in the sense of a reduction.
摘要:
A suspension system controller uses both linear and nonlinear relations to develop the suspension system state estimation. The linear components include (i) a component linearly related to the previous suspension system state estimation, (ii) a component linearly related to damping or actuator force in the suspension system, (iii) a component linearly related to error between the previously estimated relative suspension system state and measured relative system state and (iv) a component non-linearly related to error between the previously estimated relative system state, the linear and nonlinear components must all be stable, so that the estimated system state tends toward the actual system state. The controller controls the suspension system responsive to the suspension system state estimation.
摘要:
An actively controlled suspension system for automotive vehicles includes a lateral acceleration sensor and a controller for suppressing rolling of the vehicle. The controller controls a distribution ratio of anti-roll moment or lateral load shift between a driven wheel and a non-driven wheel so as to enhance steering characteristics of the vehicle. The controller changes the distribution ratio depending on both the lateral acceleration and the wheel speed difference between the driven wheel speed and the non-driven wheel speed such that the distribution ratio at a non-driven wheel side of suspension system is increased from a designated reference value according to the increase in the wheel speed difference and a rate of change in the distribution ratio is attenuated towards the designated reference value according to the increase in the lateral acceleration.
摘要:
A motor vehicle suspension system has a damper with a member rotatable through positions producing separate discrete damping characteristics. Feedback apparatus comprises a contact pad for each position, a brush rotating with the rotatable member, and an electric circuit generating an output voltage in a first voltage range when the brush does not contact a contact pad and in a second range when it does. The output voltage is repeatedly sampled to control a position count. An overrun detector responds to a predetermined change of the sampled output voltage from the second range to the first voltage range after deactivation of the motor at a selected contact pad to restart the motor so as to resume rotation of the rotatable member toward the selected contact pad.
摘要:
In a suspension control comprising a damper having a valve switchable at frequencies within a desired activation frequency range between high and low damping modes, an unfiltered damper signal is repeatedly derived from vehicle suspension related variables at a range significantly greater than the desired activation frequency range. An output filter derives a filtered damper signal from each successive binary actuator force signal by (1) resetting a timer each time the unfiltered damper signal changes value, (2) causing the filtered damper signal to be the same value as the unfiltered damper signal while the timer is inactive, and (3) maintaining the filtered damper signal value unchanged while the timer is active. The damper is controlled in response to the filtered damper signal, whereby unnecessary high frequency switching of the valve is reduced but the damper responds without unnecessary delay to signals within the desired activation frequency range.
摘要:
A fire truck comprises an uninterrupted chassis frame carrying a driver's cab and supported on four driving axles arranged in 8.times.8 configuration and driven independently. The driving axles support the chassis frame via pressure fluid springs at opposite sides of the vehicle, the forward and rearward pairs of axles and associated springs defining forward and rearward undercarriages and the chassis carrying quenching agent tanks, a quenching agent pump, and a driving engine. The fluid pressure springs at one side of the vehicle are connected via a pressure fluid supply system and a load compensator system to the springs at the opposite side. An automatic transmission is positioned between the forward and rearward undercarriages and the driving axles are individually coupled thereto. The automatic transmission is coupled to the driving engine which is situated in the chassis frame above the rear undercarriage.
摘要:
The present invention relates to a method for measuring a vertical acceleration and a velocity of a semi-active suspension system. Particularly, the present invention provides a method for obtaining a vertical acceleration from vertical accelerations measured from three vertical acceleration sensors of a semi-active suspension system of a vehicle, comprising the steps of: receiving first to third vertical accelerations measured from first to third vertical acceleration sensors; and obtaining a fourth vertical acceleration (Ad) by multiplying the first to third vertical accelerations by correction constants and subsequently summing up them. Therefore, according to the present invention, a fourth vertical acceleration can be obtained by multiplying the three vertical accelerations measured from the three acceleration sensors by the constants for correcting them to accelerations at actually desired damper positions and subsequently summing up them, thereby enabling accurate measurement and correction of the vertical accelerations.
摘要:
A system for dynamically determining an operating state of a motor vehicle for input to a controller employed to control dynamics of the motor vehicle includes sensors for measuring predetermined vehicle operating state. The system also includes a device for predicting a value for the predetermined operating state, which can then be used to determine a correction factor for the measured operating state signal. This correction factor is proportional to the erroneous component of the measured vehicle operating state. Together, measured operating state and the correction signal are used to obtain a compensated operating state signal. This is particularly useful for reducing the effects of sensor drift and DC offset.