Abstract:
The present invention relates to an apparatus for producing trichlorosilane from tetrachlorosilane in an efficient manner. The apparatus includes an inlet through which reaction raw materials including a metal silicon powder dispersed in liquid tetrachlorosilane enter, a hole through which a gaseous reaction raw material is fed, an outlet through which reaction products including trichlorosilane exit, a tubular reactor in which the reaction raw materials entering through the inlet react with each other during flow, and means for impeding the flow of the fluids to cause collision of the fluids during flow.
Abstract:
A reaction apparatus for producing trichlorosilane in which metal silicon powder M is reacted with hydrogen chloride gas, thus generating trichlorosilane, includes: an apparatus body into which the metal silicon powder is supplied; and an ejection port for ejecting the hydrogen chloride gas into the apparatus body from the bottom part of the apparatus body, wherein a plurality of holed pieces having a through hole penetrating in the thickness direction and a plurality of pellets interposed between these holed pieces are stacked in a mixed state on the upper side of the ejection port.
Abstract:
A fluidized bed reactor (FBR) for producing chlorosilane mixture, which has high contents of tri-chlorosilane (TCS), by hydro chlorination of metallurgical silicon (MGSI) and a method of producing high contents of TCS stably with the FBR is disclosed. A cooling jacket, which surrounds the lower reactor section, combined with inert initial charging material, which does not react with HCl during the reaction at a temperature of above 300° C. and pressure of above 5 bar, controls the extreme exothermal heat of the reaction. In addition to this, combination of an optimized gas distributor and a feeder that can feed the metallurgical silicon with accuracy of ±5% enabled to realize uniform temperature profile within the reaction zone within ±1 degree ° C. deviation at 350° C. of average reaction temperature and at 5 bar of reaction pressure.
Abstract:
Process for preparing trichlorosilane by reacting silicon with silicon tetrachloride, hydrogen and optionally hydrogen chloride using catalysts, where silicon is intensively mixed with the catalyst before the reaction.
Abstract:
A process for the recovery of silicon includes providing silicon-containing solids recovered from a silicon manufacturing process, said recovered silicon-containing solids being substantially free of semiconductor dopants; converting the recovered silicon-containing solids into gaseous silicon forms; subjecting to purification by minimal distillation; collecting the gaseous silicon forms as a condensed liquid of silicon-containing compounds; and utilizing the silicon-containing compounds for silicon deposition.
Abstract:
A process for the recovery of silicon includes providing silicon-containing solids recovered from a silicon manufacturing process, said recovered silicon-containing solids being substantially free of semiconductor dopants; converting the recovered silicon-containing solids into gaseous silicon forms; subjecting to purification by minimal distillation; collecting the gaseous silicon forms as a condensed liquid of silicon-containing compounds; and utilizing the silicon-containing compounds for silicon deposition.
Abstract:
[Problems] To provide a process for efficiently producing trichlorosilane on an industrial scale by efficiently reusing the waste gas of after trichlorosilane is separated by condensation from the gas that is formed by the reaction of metallic silicon with hydrogen chloride.[Means for Solution] A process for producing trichlorosilane, including, independently from each other, a first production process for forming trichlorosilane by reacting metallic silicon with hydrogen chloride and a second production process for forming trichlorosilane by reacting metallic silicon with tetrachlorosilane and hydrogen; whereintrichlorosilane and other chlorosilane compounds are separated by condensation from trichlorosilane-containing gases formed by reaction in the first production process, and the waste gas from which trichlorosilane and other chlorosilane compounds have been separated by condensation is fed as a hydrogen source to the second production process.
Abstract:
A fluidized bed reactor (FBR) for producing chlorosilane mixture containing trichlorosilane (TCS) concentration at least 50% from hydrogenation of special metallurgical silicon (MGSI), which has manganese concentration less than 35 ppmw, silicon tetra chloride (STC), and the method of producing high TCS content chlorosilane mixture is disclosed. The FBR according to current application has an expanded over head zone, whose inner diameter is at least twice bigger than that of the inner diameter of the lower straight zone. Temperature of the reaction bed is controlled between 300° C. to 600° C. within the mean temperature deviation of ±5 C. Reaction pressure is maintained between 3 to 10 bar. Retention time of the STC and hydrogen in the reaction bed is controlled to be shorter than 30 seconds. The FBR of the current application enables higher STY (space time yield; production rate/volume of the reactor) of TCS compared to any other current commercial STC cold converter, which hydrogenise STC to TCS.
Abstract:
A reaction apparatus for producing trichlorosilane in which metal silicon powder M is reacted with hydrogen chloride gas, thus generating trichlorosilane, includes: an apparatus body into which the metal silicon powder is supplied; and an ejection port for ejecting the hydrogen chloride gas into the apparatus body from the bottom part of the apparatus body, wherein a plurality of holed pieces having a through hole penetrating in the thickness direction and a plurality of pellets interposed between these holed pieces are stacked in a mixed state on the upper side of the ejection port.
Abstract:
An apparatus for producing trichlorosilane includes a reaction container in which a supply gas containing silicon tetrachloride and hydrogen is supplied therein and a reaction product gas containing trichlorosilane and hydrogen chloride is produced; a heat transfer body which is filled in the reaction container, which is formed of a material having a melting point of at least higher than 1,400° C., and which has a void part which enables a gas to be passed; and a heating mechanism heating the heat transfer body in the reaction container.