Abstract:
Novel homopolymer and copolymer compositions produced from the polymerization of non-conjugated dienes have been discovered. The novel compositions are produced by an equally novel process comprising cyclopolymerization of non-conjugated dienes employing reduced valence state Group VIB metal oxide catalyst on porous support. The preferred catalyst comprises carbon monoxide reduced chromium on silica. Copolymers are formed by copolymerization of non-conjugated dienes with 1-alkenes in contact with the activated chromium on silica catalyst. The compositions are useful as lubricants and additives.
Abstract:
A viscosity index-improver for lubricating oil compositions is disclosed. This viscosity index improver is a hydrogenated star-shaped polymer comprising a poly(poly-alkenyl coupling agent) nucleus and at least four polymeric arms linked to the nucleus wherein the arms are hydrogenated homopolymers and copolymers of conjugated dienes, hydrogenated copolymers of conjugated dienes and monoalkenyl arenes, or mixtures thereof.
Abstract:
The present invention provides am engine oil composition with excellent fuel saving properties, which comprises a lubricating base oil with a saturate content of 70 percent by mass or more and a viscosity index of 90 or greater and a star polymer as a viscosity index improver in an amount of at least 4 percent by mass or more on the basis of the total mass of the engine oil composition, the ratio (B/A) of (B) the high temperature high shear viscosity at 1×107/s shear rate and 100° C. to (A) the high temperature high shear viscosity at 1×106/s shear rate and 100° C. being 0.85 or less.
Abstract:
Chlorine-free, non-drying copolymer of isobutene with C.sub.4 -C.sub.10 -dienes having isolated or conjugated double bonds and containing at least 60 mol % of terminal double bonds, and a process for their preparation.
Abstract:
A lubricating composition including an oil of lubricating viscosity and a benzazepine compound. Methods of using such lubricating compositions are also disclosed.
Abstract:
Copolymers have a viscosity index VI of more than 160 and compriseA) from 99.0 to 99.99 % by weight of C.sub.2 -C.sub.20 -alk-1-enes andB) from 0.01 to 1.0% by weight of C.sub.5 -C.sub.20 -.alpha.,.omega.-dienes having isolated double bonds.
Abstract:
A lubricant composition comprises a base oil and a viscosity modifier including an ethylene/α-olefin interpolymer. The ethylene/α-olefin interpolymer is a block copolymer having at least a hard block and at least a soft block. The soft block comprises a higher amount of comonomers than the hard block. The block copolymer has a number of unique characteristics disclosed here. Such block copolymers offer the possibility of improved low temperature performance and flexibility in formulating motor oil, gear lubricants and greases, etc.
Abstract:
A lubricant composition comprises a base oil and a viscosity modifier including an ethylene/α-olefin interpolymer. The ethylene/α-olefin interpolymer is a block copolymer having at least a hard block and at least a soft block. The soft block comprises a higher amount of comonomers than the hard block. The block copolymer has a number of unique characteristics disclosed here. Such block copolymers offer the possibility of improved low temperature performance and flexibility in formulating motor oil, gear lubricants and greases, etc.
Abstract:
A graft copolymer is disclosed. The copolymer is prepared by the interpolymerization of a mixture of monomers comprising ethylene, a C.sub.3 to C.sub.12 alpha monoolefin, and a polyene being a member selected from the group consisting of non-conjugated dienes and trienes. Grafted to the copolymer is a 2-mercapto-1,3,4-thiadiazole moiety. Lubricating oil additives and lubricating oils comprising the graft copolymer are also disclosed.