摘要:
The present invention relates to a novel 3-hydroxypropionate-lactate block copolymer [P(3HP-b-LA)], and a method for preparing same, and more specifically, provides a method for preparing a 3-hydroxypropionate-lactate block copolymer, and a 3-hydroxypropionate-lactate block copolymer produced thereby, the method comprising: a first culture step in which, by using recombinant E. coli improved so as to be incapable of biosynthesizing lactic acid, P(3HP) is biosynthesized at the early stage of culturing by having glycerol as a carbon source and through 3-hydroxypropionate-generating genes and an enhanced PHA synthase; and a second culture step in which P(3HP) production is inhibited by using a carbon catabolic repression system for selectively introducing only glucose into E. coli when glycerol and glucose are supplied together as carbon sources, and in which polylactate is biosynthesized to an interrupted P(3HP) terminus by the enabling of the expression of a lactate synthase and a lactyl-CoA converting enzyme through an IPTG induction system.
摘要:
The invention provides a genetically modified eukaryotic microorganism for anaerobic production of essential amino acids and optionally the co-production of one or more co-products. The microorganism is genetically modified to redirect carbon flow from PEP via oxaloacetate and asparatate semialdehyde, towards the synthesis of increased amounts of essential amino acids. The microorganism may be genetically modified to produce increased amounts of one or more co-product by enhancing carbon flow from PEP via pyruvate, acetyl CoA and malonyl CoA to produce alcohols and lipids, such as triglycerides, fatty esters, fatty alcohols, fatty aldehydes, fatty amides. The invention provides a method for anaerobic production of essential amino acids using the genetically modified eukaryotic microorganism and optionally co-production of said one or more co-products. The genetically modified eukaryotic microorganism may be used for the anaerobic production of essential amino acids and optionally the co-production of said one or more co-products.
摘要:
This document describes biochemical pathways for producing pimelic acid, 7-aminoheptanoic acid, 7-hydroxyheptanoic acid, heptamethylenediamine or 1,7-heptanediol by forming one or two terminal functional groups, each comprised of carboxyl, amine or hydroxyl group, in a C7 aliphatic backbone substrate. These pathways, metabolic engineering and cultivation strategies described herein rely on the C1 elongation enzymes or homolog associated with coenzyme B biosynthesis.
摘要:
This document describes biochemical pathways for producing pimelic acid, 7-aminoheptanoic acid, 7-hydroxyheptanoic acid, heptamethylenediamine or 1,7-heptanediol by forming one or two terminal functional groups, each comprised of carboxyl, amine or hydroxyl group, in a C7 aliphatic backbone substrate. These pathways, metabolic engineering and cultivation strategies described herein rely on the C1 elongation enzymes or homolog associated with coenzyme B biosynthesis.
摘要:
This document describes biochemical pathways for producing pimelic acid, 7-aminoheptanoic acid, 7-hydroxyheptanoic acid, heptamethylenediamine or 1,7-heptanediol by forming one or two terminal functional groups, each comprised of carboxyl, amine or hydroxyl group, in a C7 aliphatic backbone substrate. These pathways, metabolic engineering and cultivation strategies described herein rely on the C1 elongation enzymes or homolog associated with coenzyme B biosynthesis.