Abstract:
A method of producing hydrogen chloride, or an aqueous solution thereof, includes the steps: a) furnishing a first electrolyte containing chloride ions; b) carrying out an electrodialysis, wherein the first electrolyte is subjected to a cathodic reduction resulting in a catholyte, wherein the concentration of chloride ions drops in the first electrolyte, the concentration of hydroxide ions increases in the first electrolyte, and a product in the form of hydrogen chloride or an aqueous solution thereof is produced; c) processing of at least a partial quantity of the catholyte, resulting in the first electrolyte, wherein an untreated saline water is used, the concentration of chloride ions increases in the catholyte and the concentration of hydroxide ions drops in the catholyte; and d) at least partial reuse of the catholyte processed according to step c) as the first electrolyte in step b).
Abstract:
A mineral processing facility is provided that includes a cogen plant to provide electrical energy and waste heat to the facility and an electrochemical acid generation plant to generate, from a salt, a mineral acid for use in recovering valuable metals.
Abstract:
The present invention generally relates to double emulsion droplet compositions, polymer particles that can be formed from such double emulsion droplet compositions, and to methods and apparatuses for making such compositions and particles. A double emulsion generally describes larger droplets that contain smaller droplets therein. These double emulsion droplet compositions can be used to create a variety of materials including polymer particles and polymeric shells and are further useful for encapsulating a variety of species including catalyst compounds and pharmaceutical agents. The double emulsion droplet compositions disclosed herein are readily formed using planar droplet (“digital”) microfluidic devices without channels, and either air or an immiscible liquid as an ambient medium.
Abstract:
The present disclosure relates to the present disclosure relates to a method of fabricating an aligned polymer containing a bonded substrate and related compositions. The method involved placing a polymer in solution which is capable of alignment wherein the polymer is also bound to a selected substrate. This may then be followed by placing the polymer solution in an electrochemical cell wherein the polymer solution is in contact with at least one electrode and applying an electric field/voltage to the polymer solution and generating a pH gradient wherein the polymer and bonded substrate positions at the isoelectric point of the polymer in solution.
Abstract:
A process and apparatus for the recovery of suspended solids from a liquid medium is disclosed. The liquid medium containing suspended solids is circulated through an electrolytic cell and an ultrafiltration unit, the suspended solids being removed from the liquid medium as a uniform particulate mass of low liquid content while a proportionate amount of the liquid and dissolved components such as surfactants is removed through ultrafiltration to avoid a dilution of the liquid medium in a continuous process. The recovered solids, following evaporation of a small amount of remaining liquid, offers a more uniform particle size as well as substantially lower recovery costs when compared with conventional techniques, such as spray-drying, now used in the industry. The disclosed electrolytic-ultrafiltration process offers application to the treatment of industrial products and wastes (polymeric, e.g., PVC and PVC copolymers, rubber, paint, cellulose, paper sludge, food, etc.) and the recovery or concentrating of valuable materials from naturally occuring sources, e.g., whey protein.
Abstract:
Ammonium tungstate, ammonium paratungstate, ammonium metatungstate or hydrated tungsten trioxide is produced by passing tungstate anions through an anion exchange membrane into an aqueous solution containing ammonium cations under the driving force of an electrical potential for a time sufficient to achieve a pH within the range in which the desired tungsten compound will form.
Abstract:
The present invention generally relates to double emulsion droplet compositions, polymer particles that can be formed from such double emulsion droplet compositions, and to methods and apparatuses for making such compositions and particles. A double emulsion generally describes larger droplets that contain smaller droplets therein. These double emulsion droplet compositions can be used to create a variety of materials including polymer particles and polymeric shells and are further useful for encapsulating a variety of species including catalyst compounds and pharmaceutical agents. The double emulsion droplet compositions disclosed herein are readily formed using planar droplet (“digital”) microfluidic devices without channels, and either air or an immiscible liquid as an ambient medium.
Abstract:
An electrolytic treatment method in which a predetermined treatment is performed using treatment subject ions contained in a treatment liquid, the method including: an electrode positioning step for positioning a direct electrode and a counter electrode so as to sandwich the treatment liquid, and positioning an indirect electrode for forming an electric field in the treatment liquid; a treatment subject ion migration step for applying a voltage to the indirect electrode and thereby moving the treatment subject ions in the treatment liquid to the counter electrode side; and a treatment subject ion redox step for applying a voltage between the direct electrode and the counter electrode and thereby oxidizing or reducing the treatment subject ions which have migrated to the counter electrode side.