Abstract:
A metallic cord has (a) a core composed of two filaments either parallel or intertwisted with each other, (b) a single filament surrounding the core and (c) a sheath of nine filaments surrounding the core and single filament. Preferably, the diameter of each filament ranges from about 0.15 to 0.4 mm. The cord may reinforce elastomeric articles such as tires, belts and hoses and preferably is used in a belt ply or carcass ply of a pneumatic tire.
Abstract:
A combined cable comprising a core cable of high-strength synthetic fibers, which take the form of a twisted bundle of monofilaments or a plurality of twisted bundles of monofilaments, and comprising an outer layer of steel wire strands, is characterized in that the bundle or bundles of monofilaments is or are stretched, with a reduction in diameter, and held in this state by a sheathing, in particular a braided sheathing. The extension under strain of the core cable under load is thereby reduced, so that the load distribution between the cross section of steel and the cross section of synthetic material of the cable improves.In order, in the same sense, conversely to make the strain behavior of the layer of strands approximate that of the core cable, the cable has an intermediate layer of an elastic synthetic material into which the steel wire strands are pressed while spaced apart from one another in such a way that the outer layer extends under load, and contracts radially.A strand can be analogously constructed.
Abstract:
Apparatus for stranding elongated elements into a bundle of reversely twisted strand sections includes a rotating accumulator drum, a rotating winding flyer at the first end of the drum, and a rotating unwinding flyer at the second end of the drum. A guide plate and collector die guide the elements into the winding flyer, and a twist blocking device guides the twisted strands out of the unwinding flyer. A first twist of the bundle is produced by the winding flyer in a zone between collector die the winding flyer. A second reverse twist is produced by the unwinding flyer in the zone between the unwinding flyer and the twist blocking device. The winding flyer, the drum and the unwinding flyer rotate around a common axis, in the same direction, but at different speeds which change in alternating winding phases. The speed of the flyers and the drum are different from each other, but constant within the particular winding phase. The speeds of the flyers and drums are selected so that the strands are drawn through the apparatus at a predetermined speed and so that twisting in reverse direction occurs in alternating sections as the strands are drawn through the apparatus. The speed of rotation of the flyers and drums also determines the tightness of the twist. Durations of the periodically changing speeds are preferably selected such that the length of the bundle stranded in one direction is equal to the length stranded in the opposite direction.
Abstract:
A combined cable comprising a core cable of high-strength synthetic fibers, which take the form of a twisted bundle of monofilaments or a plurality of twisted bundles of monofilaments, and comprising an outer layer of steel wire strands, is characterized in that the bundle or bundles of monofilaments is or are stretched, with a reduction in diameter, and held in this state by a sheathing, in particular a braided sheathing. The extension under strain of the core cable under load is thereby reduced, so that the load distribution between the cross section of steel and the cross section of synthetic material of the cable improves.
Abstract:
A wire twisting machine and method provide a randomly varying lay to pairs of twisted wires forming a cable. A pair of wires are fed into a motor driven bow mechanism which twists the wires at a given rate of speed. The bow winding speed is sensed to provide a signal to a control system employing a computer which generates a randomly varying signal between a selected minimum and maximum range. The random signal is applied to an oscillator which provides a varying frequency signal to a power supply unit. A pulsed direct voltage signal then controls a stepping motor which applies the randomly varying lay signal to vary the speed of the capstan winding the wires with respect to the independent bow speed. This varies the length of lay of the twisted wires within controlled limits.
Abstract:
A wire twisting machine and method provide a randomly varying lay to pairs of twisted wires forming a cable. A pair of wires are fed into a motor driven bow mechanism which twists the wires at a given rate of speed. The bow winding speed is sensed to provide a signal to a control system employing a computer which generates a randomly varying signal between a selected minimum and maximum range. The random signal is applied to an oscillator which provides a varying frequency signal to a power supply unit. A pulsed direct voltage signal then controls a stepping motor which applies the randomly varying lay signal to vary the speed of the capstan winding the wires with respect to the independent bow speed. This varies the length of lay of the twisted wires within controlled limits.
Abstract:
This application describes a braided cord containing a braided sheath and optionally a core surrounded by the braided sheath. The braided cord has changing cross-sectional area ranging from 0.0004 mm2 to 30 mm2 and contains one or more sections having a tapering angle ranging from 1° to 60° when observed in one direction along the cord axis. The change in the cross-sectional area of the cord can be achieved by changing the thickness of the braided sheath and/or changing the cross-sectional area of the core when the core is present. The thickness of the braided sheath can be adjusted by changing the size and/or twist level of one or more sheath strands, changing the pick count of the braided sheath, and/or using one or more shaped sheath strands. This application also describes a process of producing the braided cord with changing cross-sectional area.
Abstract:
The invention relates to a method and apparatus for measuring lay length of a wire rope having a number or external strands to form a rope having spiral grooves in the surface between the strands. A magnetic flux circuit is generated, part of which is formed within a region of the advancing wire rope. Variations of magnetic field around the region of the rope or variations of magnetic flux entering or leaving the rope are sensed by at least two sensors arranged around the rope. Signals from the sensors are subtractively combined to eliminate variations due to off-axis movements of the rope, and the combined signals reveal an oscillating pattern due to the undulating surface of the rope. Linking the oscillating pattern to distance along the rope reveals the lay length, which corresponds to a number of oscillations which is the same as the number of strands at the surface.